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USING THE RELATIONAL PARADIGM: EFFECTS ON PUPILS’ REASONING IN 

SOLVING ADDITIVE WORD PROBLEMS  

Abstract: Pupils’ difficulties in solving word problems continue to attract the attention of 

researchers.  While researchers highlight the importance of relational reasoning and modelling, 

school curricula typically use short word problems to develop pupils’ knowledge of arithmetic 

operations and calculation strategies. The Relational Paradigm attributes the leading role in 

mathematics learning to the relational thinking development. Using this perspective, we 

implemented a new approach to teaching additive word problem solving in primary school, 

encouraging relational thinking and modelling. We compared the overall results of additive word 

problems solved by Grade Two elementary pupils in the experimental group (N=216) and in the 

control group (N=196). Our data shows: a) on average, the experimental group performed 

significantly better in problem solving than the control group; b) in the control group, there was a 

considerable lack of success in solving problems that require relational thinking—there was no such 

effect in the experimental group.  
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1 CONTEXT AND FOCUS OF THE RESEARCH 

Schoolchildren’s difficulties in solving arithmetic word problems are well documented in the 

literature (e.g., Barrouillet & Camos, 2002) and confirmed by international studies such as the PISA 

(Artigue, 2011). These difficulties are usually described by incorrect choices of arithmetical 

operations or the inability to solve a problem. Many children have trouble with some types of 

arithmetic word problems up to Grade 6  of primary school (Xin, Wiles & Lin, 2008).  

The mathematics curriculum for primary school in Quebec pays special attention to the 

development of pupils’ problem-solving skills and their conceptual understanding of arithmetical 

operations. Teaching approaches that are currently used in early grades involve solving simple word 

problems to introduce addition and subtraction as mathematical operations. Further approaches 

involve solving more complex problem situations where pupils can apply and further develop their 

knowledge of addition and subtraction. Many teachers in the Quebec region experience difficulties 

in supporting pupils in the development of a deeper understanding of addition and subtraction (xxx, 

2013). They also report that while solving problems, pupils often choose the incorrect arithmetical 

operation. 

In an effort to meet the needs identified by researchers and practitioners, we proposed a study 

on arithmetic word problem solving in Grades one and two. The aim of the study draws upon Vasilii 

Davydov theory of developmental instruction (Davydov, 2008) to produce an important change in 

students’ strategies in solving word problems. Our study included five facets.  

First, we designed and implemented a training program to help teachers review their practices 

and develop a new approach—named the Equilibrated Development Approach (EDA)—which 

supposedly helps to develop deeper knowledge in solving additive word problems (xxx, 2014). We 

provide a short summary of the EDA later in this paper. 
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Second, based on our theoretical explorations, we identified important tenets and developed 

learning tasks that implement these tenets (xxx, 2017). We also discuss some of these tasks later in 

this paper.  

Third, we continuously tested and adapted teaching materials and procedures based on our 

ongoing classroom observations and teachers’ feedback. (The detailed description of this process is 

not in the scope of this paper.) 

 Fourth, we conducted multiple individual task-based interviews with pupils to better 

understand their thinking processes. This part of the study (xxx, 2015) analyses and describes grade-

two pupils strategies before, during, and after the implementation of the EDA. In section 5, we 

provide some examples of students’ strategies.  

Fifth, we collected ongoing quantitative data characterizing pupils’ performance in additive 

problem solving in experimental and control classrooms.  

In this article, we present: the theoretical platform we developed; a short overview of the 

teaching approach implemented (EDA); and the quantitative analyses of pupils’ performance in 

solving additive word problems. We also present two excerpts from individual interviews with 

students further illustrating the shift in students’ mathematical thinking. Our data suggests the 

existence of a causal relations between the EDA implemented in classrooms and the particularities of 

pupils’ performance in word problem solving.  

2 DISTINGUSHIG TWO PARADIGMES IN ADDITIVE PROBLEM SOLVING  

Given that word problems involving addition and subtraction traditionally mark the beginning of 

teaching problem solving and the use of arithmetical operations in school, special attention was paid 

to these types of word problems in research. Among multiple aspects studied, we choose to discuss 

arithmetical operations, semantic structures, and pupils’ strategies. 
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According to research (Nesher, Greeno, & Riley, 1982; Riley et al., 1984; Vergnaud, 1982), 

the semantic structure of a word problem takes on a great part of the difficulty that learners 

experience. Several categories of semantic structures, for example Change problems (where a 

quantity was added or removed) or Combine problems (where two quantities constitute two parts of 

a whole), are well-known1. It has been shown that within each category, problems with an unknown 

final state or unknown total are the easiest to solve. 

Furthermore, Pape (2003) uses the notion of consistent and inconsistent language in a problem 

to explain solving difficulties. Similarly, Bednarz and Janvier (1993) distinguish connected and 

disconnected problems. Pape’s notion of consistent language and Bednarz and Janvier’s notion of 

connected problems (e.g., Peter had 3 marbles. He won 5 marbles. How many marbles does he have 

now?) references problems where one can connect two known quantities (3 and 5 marbles) to a known 

action (won) which can be easily transformable into an arithmetical operation 3 + 5 =. The terms 

inconsistent language or disconnected problem describe a problem, which requires the semantics of 

the story to be transformed into an operation having a different meaning. (Peter had 3 marbles. He 

won some marbles. Now he has 8 marbles. How many marbles has he won? Operation: 8 − 3 = ). 

This line of argumentation (about problem’s classes and levels of difficulty) implicitly suggests that 

the understanding of the problem is based on the knowledge of key words and associated operations: 

won means add.  

                                                           

 

1 For a detailed analysis of problems classifications, see (Carpenter et al., 1993; Nesher et al., 1982; Riley et al., 1984; 

Vergnaud, 1982). 
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Conversely, researchers studying upper-primary and secondary pupils’ problem solving focus more 

on the mathematical structure of a problem and pupils’ modelling activity rather than on the 

operations per se. Empirical research (e.g., Fagnant & Vlassis, 2013; Gamo, Sander & Richard, 2009; 

Ng & Lee, 2009; Xin et al., 2008) suggests that teaching methods and techniques that focus on pupils’ 

attention to the mathematical structure of the problem, i.e. modelling activity, give rise to the solving 

strategies based on mathematical relationships and contribute to learners’ improving their word 

problem solving skills.  

A careful study of research literature in problem-solving and mathematical thinking development 

reveals the existence of two different paradigms: one drawing upon arithmetic operations and 

calculation strategies and the other putting forward quantitative relationships and modelling. The 

important distinction between the paradigms that we describe below informs the theoretical 

foundation of our work and, we believe, makes an important contribution to the field of mathematics 

education. 

2.1 THE OPERATIONAL PARADIGM 

The approach of analyzing problem-solving as the transformation of the wording of a 

problem into an arithmetical operation through the use of semantic structure is reflected in the work 

of many scholars (e.g., Bednarz & Janvier, 1993; Carpenter et al., 2008; Nesher et al., 1982; Riley 

et al., 1984). We have identified this approach as the Operational Paradigm. Within the Operational 

Paradigm, one sees arithmetical operations as the most important mathematical knowledge to be 

developed and used when analyzing problems. One also considers a word problem as numerical 

data connected by a semantic link in a story to be transformed into numbers connected by an 

operation (Figure 1). 
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We have identified several facets of the Operational Paradigm. For example, word problems 

are defined by the arithmetical operation they involve, i.e., addition or subtraction problems. Since 

word problems are considered as tools for learning operations on numbers, there is no distinction 

between a solution strategy and a calculation strategy when solving a problem. For example, the 

counting forward calculation strategy for the second marbles problem (3 + ? = 8) can be considered 

an appropriate solution strategy (Carpenter et al., 2008).  

The development of problem-solving abilities within the Operational Paradigm can be 

generalized as follows; at the first stage, pupils can see the problem as a story, mimic it using objects, 

and construct the answer as the final state of this mimicking (Nesher et al., 1982; Riley et al., 1984). 

Pupils reason in a sequential way, seeing the problem as a process and as a model of an addition or 

subtraction operation. During the final stage of development, pupils reason about the problem in a 

holistic flexible way, seeing the problem as a relationship (Lesh & Zawojewski, 2007). They can 

transform the semantic relationship given in the story into a part-whole relationship and find the 

necessary arithmetical operation. The ultimate proof of the final stage of development is that the pupil 

“is able to read the word ‘more’, and yet perform a subtraction operation” (Nesher, 1982 p. 392). 

Thus, the most difficult problems for pupils are those expressed in inconsistent language 

(disconnected) requiring an inversion of their semantic structure. 

Even though researchers recognize the importance of understanding semantic and quantitative 

relationships to solve a problem, they consider this understanding to be developed on the basis of 

arithmetical operations (rather than relationships). Thus, the Operational Paradigm views the 

Figure 1 Solving process in the Operational Paradigm 
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development of thinking related to problem solving as going from sequential thinking 

(story/process/operation) to holistic flexible thinking (structure/object/system) (Figure 2). 

 

 

Several studies (e.g., Malara & Navarra, 2002; Thompson, 1993) acknowledged the 

limitations of this approach and discuss its possible negative effects on pupils’ success in solving 

arithmetic word problems and on their prospective learning of algebra. Thompson (1993) studied 

problem-solving difficulties in upper-primary school. He explained: 

[Pupils’ difficulties] stemmed from conceptualizing the dual roles played by quantities that 

calculations were meant to evaluate. To focus on calculational matters would distract children 

from addressing the sources of their difficulties. Second, children’s school experience already 

orients them to reference-less operations on numbers. I suspect that an even greater emphasis 

on calculational subtleties would produce even greater distractions regarding children’s 

conceptualizations of relationally-rich situations (p. 202). 

Malara and Navarra (2002) bring forth similar arguments. They hypothesized that: 

The main cognitive obstacles in learning algebra are to be found in the pre-algebraic field, and 

that many of these spring up from unsuspected arithmetical contexts and they then become 

conceptual obstacles to the development of algebraic thinking, because of the weak conceptual 

control which many pupils have over the meanings of algebraic objects and processes.( p. 1)  

Figure 2 Thinking development in the Operational Paradigm 
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To address these cognitive obstacles, they propose “teaching the pupil to think of arithmetic 

in algebraic terms” (p. 2) at early grades. This suggests a change of theoretical frameworks for 

research as well as for teaching practice.  

2.2 THE RELATIONAL PARADIGM 

Davydov (1982) proposes an alternative view on how pupils can develop their knowledge of 

arithmetic problem solving. He advances the notion that additive relationship, which is “the law of 

composition by which the relation between two elements determines a unique third element as a 

function” (Davydov, 1982, p. 229), is the basis of knowledge about addition and subtraction 

operations. This additive relationship is so fundamental that he insists on teaching this relationship 

prior to counting. We identify this approach as the Relational Paradigm. 

Within the Relational Paradigm, the solver needs to understand the underlying additive 

relationship and only then can identify the arithmetical operation to calculate the unknown element 

of this relationship (Figure 3). One should name arithmetical problems according to the quantitative 

relationship they present. Additive word problems present additive relationships and they can be 

solved using addition or subtraction operations. In practical teaching and learning, there is an 

important distinction between solution strategy and calculation strategy when solving a problem. For 

example, in the case of the second marbles problem, the recognition of 8 marbles as a total and 3 

marbles as a part yields a solution strategy 8 − 3 = ?—standard mathematical expression—as finding 

the other part. This strategy is logically deduced from the identified relationship, it is independent 

from the numerical values involved and can be carried out using different calculation tools. The 

counting up strategy— 3 + ? = 8  nonstandard expression—would be an appropriate calculation 

strategy for some particular numerical values and might be carried out mentally or with tokens. 
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However, this strategy as a solving strategy might not reflect the holistic and flexible understanding 

of the relationship by the solver and it will be cumbersome with big or real numbers. 

 

 

 

Davydov (1982) proposed to begin the process of reasoning development by discussing with 

pupils the various relationships between physical objects, such as direct comparison or composition 

of amount of water in containers, paper plane figures (areas) or ropes (lengths). Within the Relational 

Paradigm, we can summarize the mathematical thinking development as moving from the 

understanding of additive relationships between physical objects (without numbers) toward a holistic 

and flexible understanding of additive structures present in word problems (with numbers) (Figure 

4). 

 

 

The two research paradigms—the Operational and the Relational—favour different modes of 

mathematical thinking development in problem solving. Within the Operational Paradigm, 

Figure 3 Solving process in the Relational Paradigm 

Figure 4 Thinking development in the Relational Paradigm 
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sequential thinking is used first. Within the Relational Paradigm, holistic (simultaneous) thinking is 

what drives things forward. 

Within the Relational Paradigm, we can reinterpret the difficulties in solving word problems 

in the following way: pupils have difficulty solving additive word problems when they fail to 

recognize and operate on the additive relationship involved. Thus, the understanding of additive 

relationships plays the main role in additive problem solving. At the same time, we cannot deny the 

role that the literal, sequential understanding of a word problem plays because it gives solvers access 

to the problem-solving task through its interpretation within a real-life context. In the same vein, the 

understanding of addition and subtraction as processes (adding and removing) ensures the appropriate 

caring of these arithmetical operations. 

3 THEORETICAL FRAMEWORK SUPPORTING EQUILIBRATED REASONING 

DEVELOPMENT  

Inspired by Sfard’s (1991) idea about the possible cognitive duality of mathematical thinking, we 

suggested that sequential thinking (addition and subtraction as processes) and systemic (holistic) 

thinking (additive relationship between three quantities as an object) can be conceived as a 

manifestation of this very duality of mathematical thinking, that is, as two distinct ways to think about 

a word problem. Sfard (1991) argues that the object and process ways of thinking, “although 

ostensibly incompatible, are in fact complementary” ( p. 1).  

We hypothesized that teaching approaches implemented within the Operational Paradigm 

promote pupils’ natural thinking preferences—sequential thinking in particular. This can lead many 

pupils to an overdevelopment of or overreliance on sequential thinking in the context of problem 

solving and can at the same time inhibit the development of a systemic relational understanding of 

problems presented as stories. Such ingrained sequential thinking, thus, creates a disequilibrium and 
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an inability to coordinate two different ways of thinking within the same problem-solving task. The 

traces of such disequilibrium should be observable in pupils’ problem-solving performance. While 

developing sequential thinking, pupils should become increasingly successful in solving connected 

problems with consistent language (Bednarz & Janvier, 1993; Pape, 2003), but not in solving difficult 

problems, which require an inversion of their semantic structure. Steffe and Johnson (1971) studied 

pupils’ arithmetic abilities and problem solving, and reported visible differences in how successfully 

Grade-one pupils solved additive word problems. They wrote:  

The mean scores for the two problem types a + b: A and a + b: N (A denotes described action; 

N denotes no described action.) were appreciably greater (no significance test performed) than 

the mean scores of the remaining problem types, which were all quite comparable (p. 58). 

If both sequential and systemic thinking are being developed in coherence, pupils’ reasoning 

will be better coordinated, and they will have similar success with all types of problems. Thus, our 

research question is: While implementing a developmental approach within the Relational Paradigm 

in the context of Grade-one and Grade-two of primary school, can we observe a significant difference 

in pupils’ performance in terms of the equilibrium between sequential and systemic relational 

thinking? 

Below, we provide the theoretical overview of the Equilibrated Development Approach 

(EDA) and a brief description of the Ethno-Mathematical model of problem solving we used to 

implement the teaching of additive word problems within the Relational Paradigm.  

3.1 THE EQUILIBRATED DEVELOPMENT APPROACH  

Based on the reasoning duality hypothesis described above, we designed and implemented a new 

approach, the Equilibrated Development Approach (EDA). This approach is used to teach additive 
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word problem solving by supporting the simultaneous and equilibrated development of the two ways 

of thinking (the relational and the sequential). 

 

 

Within the EDA, the holistic understanding of relationships between physical objects (such 

as comparison or combination of strings of different lengths) and the sequential understanding of 

arithmetical operations make up the foundation of problem-solving knowledge development (Figure 

5). Following the main idea of the Relational Paradigm, we advocate that word problems might be 

tools for relational thinking development. Therefore, the EDA engages pupils in an explicit analysis 

of the mathematical structure of a problem as a system of quantitative relationships. We used line 

segment diagrams (named Arrange-All diagrams) with reference to strings, to model these 

relationships and support the analysis of the mathematical structure of the problem. The 

distinguishing property of the Arrange-All diagrams is that they allow the representation of 

relationships without necessarily representing numerical values. Below, we used the Arrange-All 

method to represent the second marbles problem as an additive relationship (Figure 6). 

Peter had 3 marbles. He won some marbles. Now Peter has 8 marbles. How many 

marbles did he win? 

Figure 5 Thinking development in the Equilibrated Development Approach. 
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3.2 THE ETHNO-MATHEMATICAL MODEL  

To support the implementation of the EDA in the classroom, we used the Ethno-Mathematical 

model of the problem-solving process (Mukhopadhyay & Greer, 2001; xxx, 2015; xxx, 2008). We 

adjusted this model to support the relational reasoning in solvers. According to this model, to solve a 

problem, the solver should access the sociocultural context through the text of the problem (literally 

understand the story). Then, the solver should express her understanding of the situation within the 

mathematical context by creating a graphical model (ex. Arrange-All diagram), producing a holistic 

view of the quantitative relationships involved. In respect to the relational paradigm, we ask pupils 

to model relationships, not operations, numbers or objects. From this model, the necessary 

arithmetical operation can be derived, thus transforming the holistic view into a calculation sequence. 

For example, looking at the model in Figure 6, one can propose that in order to find “marbles Peter 

won,” we need to remove/subtract “marbles Peter had” from “marbles Peter has now”, or 8 − 3. This 

deduction is highly general and supports solving problems that involve different types of numbers. 

The calculation step can also be modelled separately and carried out using different tools depending 

on the nature of numbers involved. The learner should then make sense of the calculation results in 

terms of the sociocultural context, evaluating it in relation to the initial understanding of the problem 

(Peter won 5 marbles, which is socioculturally reasonable within the given story). Thus, the problem-

Figure 6 Arrange-All diagram for the problem. The marbles Peter had and the marbles Peter won 

compose the total of the marbles Peter has now. 
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solving process is organized in a cycle, potentially supporting the development of both sequential and 

systemic (holistic) thinking in learners.  

 

 

 

The Ethno-Mathematical model (EM model) is similar to the approach developed within the 

theory of Realistic Mathematics Education (REM) (Gravemeijer, Lehrer, Oers, & Verschaffel, 2002) 

which suggests building student mathematical thinking from real-life knowledge via modelling. 

However, the EM is different from the RME in two important details of its implementation. First, the 

students need to read the text prior to get to the “reality” of the situation. The reading directly affects 

the success of problem solving especially for very young students. Therefore, the EM model describes 

the reading and literal comprehension step explicitly. Second, consistent with the relational paradigm, 

EM states explicitly what should be modelled by pupil is the relationship(s) and not numbers, objects 

Figure 7 Ethno-Mathematical model of the problem-solving. 
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or operations. RME model is not clear about what pupil should model, thus it might allow pupil to 

model calculation instead of the relationships among the data. Summarizing the above differences, 

we suggest that the EM model is similar to the RME model, but more accurate in distinguishing 

between modelling (relationships) and calculation (operations and numbers). 

4 METHODOLOGY 

4.1 PARTICIPANTS 

The study was conducted in French. Our participants came from both rural and urban schools. Our 

participants were teachers and their pupils who volunteered to participate were placed in either the 

experimental or the control group. All of the teachers had at least 5 years of teaching experience. 

During the three years of the study, 12 teachers participated in the professional development program 

that focused on additive problem solving for at least one year. The teachers implemented newly 

designed activities within the EDA in their 14 Grade-1 and Grade-2 classrooms (N=216 pupils, 6-8 

years old, 101 girls and 115 boys). Fourteen other teachers agreed to participate as a control group 

(N=196 pupils, 7–8 years old, 81 girls and 115 boys). They did not participate in the professional 

development group and knew nothing about experimental activities and the EDA approach. 

The majority of pupils were native French speakers (N=195 in the experimental group, N=160 in the 

control group). All teachers and the parents of the 412 pupils signed an ethical consent form. Within 

the experimental group, the majority of pupils (N=178) experienced traditional teaching in Grade-

one and were taught using EDA over one school year in Grade-two. Some other pupils (N=13) 
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experienced the EDA for one school year in Grade-one.2 Other pupils (N=25) were taught using EDA 

in both Grades 1 and 2. Within the control group, all pupils experienced traditional3 teaching in both 

Grade-one and Grade-two. 

4.2 APPROACH TO PROBLEM-SOLVING IN THE EXPERIMENTAL GROUP 

The teacher-participants integrated the EDA into their regular curriculum for teaching additive 

problem solving. None of them added extra time to work on mathematics with pupils, to train them 

to perform mental calculation, or to provide them homework on problem-solving.  

A number of activities were implemented in class, during which the teachers invited pupils to analyze 

different situations involving the additive relationship between three quantities. For example, they 

presented pupils regularly with mathematically impossible situations such as: Peter had 3 marbles. 

He then won 6 marbles. Peter now has 8 marbles. Pupils constructed an Arrange-All diagram to 

represent the described additive relationship. They then used this model to find values (to replace 3, 

6, or 8) to make the situation correct. We explain the use of this type of task in a classroom in a 

previous publication (xxx, 2017). 

Teachers consistently used Arrange-All diagrams with each problem-solving task to support the 

dialogue around the additive relationships. They challenged pupils’ understanding of the connection 

between the text of the problem and the diagram. They insisted that the mathematical expressions be 

written in a standard form (“8 − 3 =  ?” being acceptable and “3 + ? = 8” being unacceptable). 

                                                           

 

2 We tested the performance of these pupils at the end of Grade-one. 

33 Traditional teaching refers to the approach promoted by the schoolboard for the last several years. 
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Meaning that students should not only translate a sequence of events as “something was added”, but 

show that they understand the part-part-whole relationship of the situation in a flexible way. Further, 

students can deduce that a part can be found as a result of subtraction “whole-remove-part”. This 

element of deduction is critical to the distinction between sequential and holistic thinking. 

The limitations of this paper do not allow for a detailed description of all particular tasks that were 

used in the project. However, the key point is that all these tasks and classroom activities attracted 

pupils’ attention to the additive relationship, by explicitly separating the analysis of the problem from 

the calculation, and therefore implementing the Relational Paradigm. 

4.3 APPROACH TO PROBLEM-SOLVING IN THE CONTROL GROUP 

Teachers in the control group followed the teaching instructions adopted by their schoolboard. 

According to the schoolboard consultant responsible for the math teaching in elementary schools, 

usual problem-solving practice includes: carefully reading the problem, identifying the numerical 

data, representing it using tokens or ten blocks (drawing) to support the calculation, and writing a 

mathematical expression in any form.  

4.4 QUANTITATIVE DATA COLLECTION 

The main results that we discuss here come from the written additive word problem solving tests 

(paper test) administrated to pupils at the end of their second year of schooling (7–8 years).4 We 

collected these data during all three years of study, therefore the experimental pupils’ results come 

                                                           

 

4 The 13 pupils who experienced the EDA during their first year sat the test at the end of the first year. 
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from different stages of the teachers’ appropriation of the EDA approach. All participants completed 

the paper test.  

During the first year of the study we also conducted a computerized test asking pupils to solve 

problems in more rigorous conditions (we describe below):  26 pupils from the experimental group 

and 98 pupils from the control group participated. Seeing as we could not provide the appropriate 

computer environment for all participants, we used small-scale computer tests to verify the reliability 

of the paper test conditions.  

Given that the study was conducted in different classrooms, we did not control all specific variables 

of the teaching implemented by each teacher nor was it our intention. This gave us a larger view of 

the observed phenomena while limiting the control of some didactic variables.  

4.5 QUALITATIVE DATA COLLECTION 

During the first year of the study, the first author also conducted four sessions of individual semi 

structured problem-based interviews with 12 students from the experimental group (48 interviews). 

We used word problems similar to those of the written test to dig deeper into the students’ reasoning 

and to witness the shift towards relational thinking in the students’ problem-solving strategies (see a 

very detailed analysis in xxx, 2015).  

4.6 WORD PROBLEM-SOLVING TESTS 

Each test, whether paper or computer, included four additive word problems. Each problem had one 

additive relationship and included two numbers smaller than 50, and one extra (irrelevant) piece of 

data. We used the extra data to minimize the chance of pupils obtaining a correct answer by simply 

adding all the numbers together. The full text of the problems can be found in Annex 1. 
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Table 1 presents the problems’ semantic structures according to the well-known 

classifications (Riley et al., 1984) and correct solutions. 

Table 1 Problems' semantic structures according to Riley et al. (1984) 

Problem 
Structure Correct solution 

Ladybug 
Combine (2) or Part-

Whole, part unknown  

 

17 - 8 

Rolls 
Change (3) or Positive 

change, change unknown  

 

36 - 28 

Homework 
Change (6) or Negative 

change, total unknown  

 

15 + 7 or 7 + 15 

Marbles 
Combine (1) or Part-

whole, whole unknown  

 

14 + 27 or 27 + 14 

MarblesCOMP 
Combine (2) or Part-

Whole, part unknown 

 

43 - 27 

HomeworkCOMP 
Change (4) or Negative 

change, change unknown 

 

21 - 7 

RollsCOMP 
Change (1) or Positive 

change, result unknown 

 

28 + 8 or 8 + 28 

LadybugCOMP 
Combine (1) or Part-

Whole, whole unknown 

8 + 9 or 9 + 8 

 

Before starting the test, we explained to the pupils that the desired solution is the mathematical 

expression, which explains how to calculate the answer to the problem. We presented them two 

example problems that were solved on the blackboard and we put the answers both in the acceptable 

form 2 + 3 =  ⎕  and unacceptable form 2 + ⎕ = 5 , we then crossed out the unacceptable form 

on the blackboard. We say: “the operation you propose as a solution should not contain an unknown, 

It should appear as a result”. We also allowed pupils to use tokens, drawings, and other techniques 
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they usually used in class. However, we insisted that they give a mathematical expression, 

emphasizing that the final number (the answer) was not so important. Very few pupils used tokens. 

The pupils were allowed to request reading assistance, which was provided by the researcher, and 

they were permitted to ask questions in case they did not understand words or expressions used in the 

word problem. Pupils were given an unlimited time to complete the test. 

We considered the problem as successfully solved if the pupil provided the correct 

mathematical expression in the expected standard form. In line with the Relational Paradigm, 

mathematical expressions containing an unknown as a term of the operation can describe the 

situation, but not the arithmetical operation to be carried out. The transformation of such expressions 

into the standard form requires holistic thinking and showcases the difficulty of inversion studied in 

this project. In absence of the correct mathematical expression, even if the numerical answer was 

correct, we considered the problem unsolved. Being able to communicate a solution strategy using 

mathematical expressions represents a different type of thinking than just mentally calculating the 

correct number. 

Within the computer environment, the solver needed to compose a mathematical expression 

by dragging data from the text and an operation into the reserved space. There was no possibility to 

compose an expression in a nonstandard form, because no “?” sign (or other) was available. 

Therefore, the computer test presented more rigorous conditions as it excluded the possibility for 

pupils to follow the classroom “tradition” of using nonstandard expressions. For both groups of 

pupils, it was the first time they had used this type of computer environment. We used this test with 

only 26 experimental pupils, because the other experimental pupils had used the computer 

environment within other learning activities. Therefore, the data from them would have been biased.  
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4.7 REASONING EVALUATION MEASURES 

We coded the successful solving of a particular problem by a pupil as “1” and failure to do so as “0.” 

In order to characterize pupils’ reasoning in problem solving, we chose two measures. The first 

measure characterized the average success (AS) of a pupil in solving all four problems on a test: 

AS=1 meant that all problems were solved, and AS=0 meant that none of the problems were solved. 

The second measure characterized the difference between success in solving easy problems 

and difficult problems, thus showing pupils’ sensitivity to difficult/easy problems. In order to 

determine which of the four problems were easy and which ones were difficult, we adopted the idea 

of Steffe and Johnson (1971), who based their judgment about a problem’s difficulty by the mean 

values of success for each problem. We then compared the control group’s success in solving the test 

problems. Table 2 presents the results. 

Table 2 Descriptive Statistics, control group 

 

N Mean Std. Deviation Skewness 

Statistic Statistic Statistic Statistic Std. Error 

Ladybug 196 .33 .47 .75 .17 

Rolls 196 .34 .48 .67 .17 

Homework 196 .67 .47 -.72 .17 

Marbles 196 .59 .49 -.38 .17 

MarblesCOMP 98 .17 .38 1.75 .24 

HomeworkCOMP 98 .17 .38 1.75 .24 

RollsCOMP 98 .32 .47 .75 .24 

LadybagCOMP 98 .47 .50 .13 .24 

 

It is quite clear that on the paper test, pupils had more success with the Homework and 

Marbles problems than with Ladybug and Rolls problems. On the computer test, the MarblesCOMP 

and HomeworkCOMP problems are shown as being more difficult than the RollsCOMP and the 

LadybagCOMP. This corroborates with Steffe and Johnson’s observations. 
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Thus, we defined the difference factor (DF) for a pupil for the paper test as 𝐷𝐹 =

(𝐻𝑜𝑚𝑒𝑤𝑜𝑟𝑘 +  𝑀𝑎𝑟𝑏𝑙𝑒𝑠 –  𝐿𝑎𝑑𝑦𝑏𝑢𝑔 –  𝑅𝑜𝑙𝑙𝑠)/2. The value of 𝐷𝐹 = 1 meant that the pupil solved 

the two easy problems and did not solve the two difficult ones. The value of 𝐷𝐹 =  −1 meant that 

the pupil solved the two difficult problems and none of the easy ones. The value of  𝐷𝐹 = 0 means 

that the pupil solved as many easy problems as they did difficult ones.  

For the computer test,  𝐷𝐹 = (𝐿𝑎𝑑𝑦𝑏𝑎𝑔𝐶𝑂𝑀𝑃 +

𝑅𝑜𝑙𝑙𝑠𝐶𝑂𝑀𝑃– 𝑀𝑎𝑟𝑏𝑙𝑒𝑠𝐶𝑂𝑀𝑃– 𝐻𝑜𝑚𝑒𝑤𝑜𝑟𝑘𝐶𝑂𝑀𝑃)/2.   

We calculated these two measures (AV and DF) for each pupil in all groups for both paper 

and computer conditions. We also calculated each group’s average success (GAS) as the mean value 

of the AS in each sample. The group difference factor (GDF) was calculated as the mean value of DF 

in each group including only the pupils who solved at least one problem, but not all of them (complete 

failure and total success data can bias the differentiation calculation).  

5 RESULTS 

We obtained the following results for the average success in solving problems within the two 

conditions. Table 3 presents the semantic structure of each problem, pupils success, and 

corresponding results obtained by Steffe and Johnson (1971). 

Table 3 Pupils' performance proportion for paper and computer problems compared to Steffe and Johnson 

(1971, p. 59)   

Structure Experimental group 

success  

Paper N= 216 

(Computer N=26) 

Control group success  

N=196 (Computer N=98) 

Steffe and Johnson (1971, p. 

59) 

Grade-one pupils N=125  

success  

(No objects present) 

Combine (2) 0.65           (0.38) 0.33         (0.17) (a + x: N) 0.38 

Change (3) 0.56           (----)  0.34         (-----)  (a + x: A) 0. 41  
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Change (4) ------          (0.46) -------       (0.17) (a + x: A) 0.41  

Change (6) 0.70           (-----)  0.67         (------)  (a + b: A) 0.70 

Change (1) ------          (0.34) -----       (0.32) (a + b: A) 0.70 

Combine (1) 0.59          (0.69) 0.59       (0.46) (a + b: N) 0. 67  

Mean score (GAS) 0.62          (0.47) 0.48        (0.28)  

Difference factor 

(GDF) 

0.04          (0.13) 0.30        (0.42)  

We conducted a further statistical examination of each of the two characteristics of control 

and experimental populations (T-test using IBM SPSS software). The overall results of the paper test 

show that the mean score is significantly higher in the experimental group than in the control group 

( . 62 > .48  𝑝 < .01) with a moderate effect size dCohen= -0.437 (Confidence Coefficient=95%). At 

the same time, the difference factor in the experimental group is closer to 0 than in the control group 

( . 04 < .30  𝑝 < .05 ) with a high effect size dCohen=0.691 (Confidence Coefficient=95%).  

5.1 ANALYSIS OF QUANTITATIVE RESULTS 

As we stated previously, the data obtained in the control group follows the pattern reported 

by Steffe and Johnson (1971).  We can clearly see the difference in success between difficult 

(Combine 2, Change 3, 4) and easy problems (Change 6, Combine 1). The data obtained in the 

experimental group does not show the same pattern: the success are close within the paper test 

environment (0.56 - 0.70). Within the computer test environment, the success diverge further, but not 

for the same semantic structures as are in the control group, with Combine 2 and Change 1 problems 

being more difficult than Combine 1 and Change 4. 

The evaluation of the second characteristic, the difference factor, may indicate the cause of 

the experimental group’s higher performance in our study. The gap in performance between difficult 

and easy problems is significantly narrower in the experimental group than in the control group. As 

the average performance is not close to 0 or to 1.0, the narrow performance gap for different types of 

problems cannot be associated with the absence of knowledge or with full knowledge development. 
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We can only explain the small difference factor by the experimental group’s equal success in solving 

difficult and easy problems. 

 Looking closer at the paper-test results, the following two figures show that the AS in the 

control group is distributed close to the normal. In the experimental group, the shift towards the 

maximum value is clearly visible. 

 

Figure 8 Average success in experimental and control groups 

 

Figure 9 Difference factor in experimental and control groups 
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The distribution of the DF in the control group is shifted towards the maximum value—the 

greatest difference between easy and difficult problems. In the experimental group, the DF is 

distributed close to normal with the majority of cases near the middle value (DF=0). 

According to our theoretical framework, relatively difficult problems require holistic flexible 

thinking for their solution and easier problems can be solved by using sequential thinking. The pupils’ 

performance in solving additive problems in our study can be interpreted as follows. The pupils in 

the control group developed (or relied on) more sequential thinking than holistic thinking while being 

in the middle of their knowledge development process (GAS 48%). The pupils in the experimental 

group developed their mathematical thinking in better equilibrium or relied more on the relational 

holistic thinking. Holistic thinking allowed the pupils to be as effective in solving difficult problems 

as easy problems even though they were also in the middle of their knowledge development process 

(GAS 62%). 

This conclusion is also supported by the data obtained with the computer test. Even though 

the experimental group showed an important variability in performance of the four computer 

problems, this variation does not correspond to the pattern observed in the control group. The control 

group pattern is the same as observed by many researchers who associated it with the semantic 

structure of problems. We can propose that the difficulties pupils in the experimental group had with 

RollsCOMP, MarblesCOMP, and HomeworkCOMP were not directly due to the problems’ semantic 

structure. In a situation where the semantic structure is not the cause of the difficulty, other factors, 

such as context or wording start to play important roles producing different performance patterns. 

Furthermore, the difference between sequential and holistic reasoning in solving word 

problems clearly appears through the comparison of students’ solving strategies before and after the 
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EDA training. The following section reveals the difference in one student’s thinking before training 

and after six months of in class EDA training. 

5.2 SOME QUALITATIVE DIFFERENCE IN STUDENT’S THINKING 

We present here two excerpts from interviews (translated from French) conducted at the 

beginning and at the end of the year when the EDA was implemented in a Grade-Two classroom for 

six months. Both interviews involve the same student, Eva, who performs at grade in mathematics 

according to her teacher. 

Before training. Eva solved the following problem:  There were 34 logs in the bag that the 

father bought to make a campfire. The fire is lit for 48 minutes. Some logs are already burnt. There 

are 27 logs left in the bag. How many logs were burnt? The experimenter read the problem to the 

student. 

Experimenter: Explain it to me, please. Can you explain? 

Eva: I look first to the digits. Like, there is 34 logs, there are some burnt, then there 

are 27 that are… that are burnt. Then I look, there is 48, I think. I don’t remember. 

… 

Eva: [reads the problem by herself] Now, I think I understand, cause, there are 34 logs. 

Then, there are 27. There are 27 left. In my head, I know how to remove them, the ones that 

burnt. Can I do it? 

In this episode, Eva demonstrates that she was paying great attention to the numbers in the 

problem.  

Eva: [draws 34 circles and starts to cross them out one by one from the end. Stops 

after crossing 5 circles. She recounts remaining circles to finally adjust her representation to 

the story.] 
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In this episode, the student goes back and forth to adjust her representation of the story. 

Experimenter: Can you answer the question now? 

Eva: Yes. There are left… burnt, there are 1, 2, 3, …[counts silently crossed circles]. 

There are 7 burnt. 

In this episode, Eva uses the mimicking strategy—she draws the events of the problem 

sequentially to figure out the final state and counts the burnt logs. Somehow, Eva modelled the 

situation and figured out the correct numerical answer. However, she did not analyze the part-part-

whole relationship and did not deduce the arithmetic operation in a general way.  

 

Figure 10 Eva uses mimicking strategy 

After training (in 6 months). Eva solved the following problem: In 2011, there were 365 

days. In her calendar, Julie marked 198 school days and 10 holidays. How many days were without 

school in 2011? The student reads the problem and the experimenter discusses with the student the 

meaning of the expressions: school days, holidays, year 2011. 

Experimenter: What can we do? 

Eva: I think that I need to do this because I understood… [Draws a horizontal line] I 

do not understand but I think we need to do this. [Put arcs above and under the horizontal line 

in a way similar to the part-part-whole diagram]. 

Eva: [answering experimenter’s questions about her drawing] In total, there is this 

[encircles the number 365 in the text and put it on the diagram].  

Eva: In total is what is all-together [making a gesture total with her two hands]. 
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Eva: It is vacations and school days. 

In this episode, we see Eva respecting the learned process of solving a problem i.e. drawing a 

diagram first. She pays attention to the quantity and its role within the relationship (total, all days). 

Experimenter: OK. [Shows the two above arcs of the diagram] Here, you also 

represented something? What is it? 

Eva: I think I need to put this (encircle the number 198 in the text and put it over the 

right arc of the diagram]. 

Experimenter: What is it? 

Eva: Schooldays, and here [points with her finger to the left part of the diagram] is 

what we are looking for. In the… [points with her finger to the question of the problem] This 

is…, we are looking for this because we do not know what it is. 

In this episode, Eva correctly identifies parts of the whole by linking the elements of the 

diagram to the problem’s data. Next, she produces a correct calculation expression 365 –  198 =. 

Experimenter: And if I ask you, should we add? 

Eva: I don’t know. 

Experimenter: You do not know? 

Eva: No. I think it should be minus. 

Experimenter: You think it is minus. Why do you think it is minus? 

Eva: [points to the right part of the diagram which is 198]. If we remove what is at 

school, we will know what is here [points to the question of the problem]. 
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Figure 11 Eva uses diagram strategy 

In this last part of the dialogue, the experimenter challenged the strength of Eva’s conviction. 

In response, Eva used her diagram as a model to justify her solution, thus demonstrating holistic 

relational reasoning. 

Comparing these two episodes shows that the student’s understanding of the reality of the 

problem does not directly produce the most general solution. It also contrasts sequential thinking and 

holistic thinking. Indeed, in both cases the student used strategies based on the reality of the situation. 

However, the sequential strategy described in the first interview may become an obstacle if the 

numbers are big and hinder the flexibility of thinking. Yet, the holistic relational strategy produced 

in the second interview addresses these issues. In our study, we observed multiple cases of students 

using the latter strategy when they followed EDA training. 

6 DISCUSSION AND CONCLUSIONS 

We suggested that in the case of solving simple additive word problems, sequential reasoning 

(addition and subtraction as processes) and holistic systemic reasoning (additive relationship between 

three quantities) complement each other. Some teaching approaches can generate a well-balanced 

development of both types of reasoning in pupils. In other cases, sequential reasoning can be 

overdeveloped in relation to systemic relational understanding, thus creating a reasoning 
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disequilibrium. In this paper, we studied the effects of implementing the EDA within the Relational 

Paradigm on pupils’ problem-solving success. The EDA explicitly requires students to model and 

analyze a problem as a system of quantitative relationships, thus equilibrating their sequential 

thinking by their holistic thinking. Our analyses of pupils’ performance in the control and 

experimental groups suggest that different approaches to teaching additive word problem solving 

engender different patterns of success. The example of one student’s strategies before and after EDA 

training illustrates the shift in students’ reasoning. We discuss below some connections to other 

research and teaching practices. 

Although many researchers highlighted the importance of relational thinking, the clear 

distinction between two paradigms and the idea of equilibrium provide an important theoretical 

improvement. By formulating the perspective on mathematical reasoning development in schools as 

the Relational Paradigm, our research continues the work of other researchers (Davydov, 2008; 

Iannece et al., 2009; Malara & Navarra, 2002; G. Zuckerman, 2004). Within this paradigm, we 

recognize the prevalence of relational thinking as a tool for problem solving and as an educational 

goal. 

Based on our theoretical framework, we conjectured that the disequilibrium in thinking, with 

the dominance of sequential thinking, generates more difficulties for pupils in solving word problems 

requiring an inversion of semantic structure for their solution (difficult problems). Our data suggest 

the existence of such difficulties in the control group, which correlates with the situation observed by 

Steffe and Johnson (1971) and many other researchers (e.g., Nesher et al., 1982; Riley et al., 1984; 

Vergnaud, 1982).  The control group in our study experienced the traditional teaching approach which 

promotes pupils’ personal strategies in problem solving (e.g., Carpenter et al., 1993). The approach 

of promoting pupils’ personal strategies can potentially promote the dominance of sequential 
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reasoning in some pupils, making inconsistent problems difficult for them and thus creating a learning 

obstacle. It is also possible that the main cause of this negative effect is the traditional teaching 

approach developed within the Operational Paradigm, which focuses on arithmetic operations and 

calculation and gives little attention to structures and relationships. 

Our results indirectly confirm the hypothesis of reasoning duality in additive word problem 

solving. We have started with this hypothesis in mind (Sfard, 1991) and have developed the EDA 

based on this hypothesis in the hope of producing a significant shift in pupils’ thinking development. 

As our data shows the significant positive difference between the control and experimental groups, 

we can conclude that the reasoning duality hypothesis is indirectly confirmed.  

Furthermore, our results support the idea of “the multidimensional landscape  of  

developmental  potentials” discussed by Zuckerman (2004) as an aspect of the zone of proximal  

development concept. Many researchers and practitioners see mathematical reasoning development 

as a linear process—where only one way is possible. Particularly in arithmetical problem solving, 

curricula proposes the path from counting and the calculation of simple operations, to solving simple 

problems. Russian researchers (e.g., Davydov, 2008; G. A. Zuckerman, 2004) designed and 

implemented a different curriculum path: from quantitative relationships of objects to abstract 

notation, to solving problems. We studied the possibility of parallel growth and the integration of 

both: the counting/calculation/operations and relational thinking lines of development. Our study 

shows that the idea of simultaneous development of different ways of thinking, while preserving an 

equilibrium and appropriate coordination between these ways of thinking, has a promising potential 

for teaching mathematics and for future research.  

Our research contributes to the knowledge of problem-solving ability development. Similar 

to the theory of Realistic Mathematics Education, which focuses “on teaching  the  activity  of  
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mathematizing  instead  of  teaching  the  results  of  the mathematizing activities of others” (Van 

Stiphout, Drijvers, & Gravemeijer, 2013), the EDA and Ethno-Mathematical model of problem 

solving focuses on teaching how to analyze and model situations described in natural language and 

how to connect the everyday story comprehension with relational mathematical thinking. However, 

specially designed mathematically unrealistic situations (written stories) in our study helped pupils 

to understand the additive relationship as an object, independently from their understanding of 

arithmetical operations and the real-life context. 

Finally, relational thinking in mathematics is a precursor of algebraic reasoning (Kieran, 

2014).  Many researchers (e.g. Blanton et al., 2015; Cai & Knuth, 2011; Carraher & Martinez, 2008; 

Gerhard, 2009; Lins & Kaput, 2004) studied pupils’ difficulties with algebra and argued for the 

development of algebraic reasoning in primary school. However, an early introduction of algebraic 

activities in the curricula is often disconnected from the arithmetical problem solving. The EDA 

experimented in our study connects algebraic and arithmetic activities and supports the equilibrium 

in reasoning development. A more detailed study is required to understand in detail how different 

teaching approaches contribute to supporting or precluding the relational reasoning and the 

equilibrium in pupils’ reasoning development.  
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