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In this theoretical essay, we critically analyze some multiplicative structures identified 

by researchers and practitioners in the field of teaching elementary school 

mathematics (grades 3-5). Drawing upon Davydov’s theory of developmental 

instruction, we use the relational perspective and propose another classification and 

graphical representations of multiplicative structures. We suggest that the new 

approach may better support student understanding of multiplicative relationships and 

at the same time contribute to the foundation of their algebraic thinking. 

INTRODUCTION 

The teaching and learning of problem solving, a fundamental pillar of school 

education, always attracts researchers’ close attention. Problem-solving activities 

formally debut at the beginning of schooling where students deal with simple word 

problems requiring one arithmetic operation for their solution. In order to support 

effective teaching and learning of problem solving at this stage, researchers analyzed 

simple word problems and their semantic structures and produced typologies of 

additive word problems (requiring one addition or subtraction operation) and 

multiplicative word problems (requiring one multiplication or division operation). 

However, theoretical clarification about the mathematics behind simple word 

problems did not lead to the elimination of teaching and learning difficulties. What’s 

more, recent works about early algebra and modelling bring new perspective in the 

area of simple word problem solving.  

In 2011-2014, responding to the practical needs of teachers in our region (Quebec), we 

conducted a research project focusing on additive problems and their teaching in 

grades 1 and 2. We aimed at facilitating students’ learning to solve such problems as 

well as at developing their mathematical thinking. After having critically analyzed the 

literature concerning additive word problems, we proposed the existence of two 

distinct paradigms of research in the area: the operational paradigm and the relational 

paradigm. The operational paradigm recognizes arithmetic operations as the basis for 

understanding real world situations (or word problems) involving adding, removing, 

comparing, equalizing, sharing etc. The relational paradigm, however, preconizes the 
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holistic and flexible understanding of simple relationships between three quantities as 

the foundation for solving such problems. Drawing upon Davydov’s (1982) definition 

of the additive relationship as “the law of composition by which the relation between 

two elements determines a unique third element as a function” (p. 229), we tried to root 

the teaching and learning of additive problem solving in students’ holistic and flexible 

understanding of this relationship. We also use a specific graphical representation of 

the additive relationship to allow students’ modelling additive problems based on their 

understanding of the relationship involved. This new epistemological perspective 

proved to be fruitful allowing for the design of quite successful teaching strategies. The 

teachers who participated in the study reported that they could not imagine returning to 

the old way of teaching (based on operations and key words) (Savard et al., 2018). 

Since 2016, an extension to our study has been aimed at examining the multiplicative 

word problem solving in grades 3-6. To date, following an in-depth analysis of 

available typologies of multiplicative situations (or word problems), their sematic 

structures, and their graphical representations, we analyzed the multiplicative 

situations from the relational perspective.  

In this paper, we discuss simple multiplicative word problems, their structures and 

typologies, and their graphical representations as these are treated in the literature. We 

then discuss, in more detail, the relational perspective. We conclude by suggesting that 

specific representations of multiplicative structures, coherent with the relational 

paradigm, can enhance students’ thinking mathematically and their learning to model 

and solve problems. 

MULTIPLICATIVE STRUCTURES AND THEIR REPRESENTATIONS 

Discussing understanding and representations in mathematical problem solving 

Vergnaud (1983) distinguishes two possible directions in their analysis: implicit 

representations the solver can have of the problem and explicit representations the 

solver might create to communicate the important elements and retained operations in 

form of graphic drawings and letter expressions. (Vergnaud, 1983, p. 33). Vergnaud 

suggested that the former informs the latter. Thus, researchers can observe and study 

students’ graphical representations of problems in order to understand their implicit 

internal representations.  

Some researchers (e.g. Rockwell, 2012; Mancl, 2011) also propose to explicitly teach 

schemes and graphical representations to students, especially to those having 

difficulties in mathematics, and claim that such practices facilitate problem solving. 

Some teachers’ manuals (e.g. MEO, 2008; MELS, 2009) and official documents that 

guide teaching practices provide various typologies of multiplicative structures 

together with their graphical representations claiming that these representations should 

not only support teachers’ understanding of these structures but also guide their 

teaching. 
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As part of our extended research, we examined these sources and analyzed the 

multiplicative structures and the representations provided in them in order to identify 

the kind of thinking they might potentially evoke in learners if used explicitly within 

the teaching-learning activity. 

Some of the problem types (or categories) studied reflect mainly mathematical 

structures (e.g. Cartesian product, mapping rule, equal groups) while others pay special 

attention to actions (e.g., rate, multiplicative change, sharing), disposition (rectangular 

disposition), comparison expression (e.g., times more, times less) or what is unknown 

or invariant.  

In addition, representations of multiplicative structures are also diverse and reflect 

different aspects of the represented situation. For example, Nunes, T., & Csapó, B. 

(2011) mention the following problem: 

“Together Rob and Ann have 15 books (quantity). Rob has twice the number of books that 

Ann has (or Ann has half the number of books that Rob has) (relation). How many books 

does each one have?” (p. 29) 

This problem presents a multiplicative structure belonging to the multiplicative 

comparison category. The authors propose to represent this situation as shown on 

Figure (a). 

a) Adapted from Nunes, T., 

& Csapó, B. (2011). 

b) Adapted from MELS 

(2009). 

c) Adatpted from Van de 

Walle & Lovin, (2008) 

  
 

Table 1: Representations of the book problem 

A close look at this representation makes it clear that each point (extremities of arrows) 

in column A represents one of the books Ann has, and that each point in column R 

represents one of the books Rob has. The number each has, being unknown, makes it 

impossible to fully represent the situation.  

Other sources propose different representations for the multiplicative comparison (b). 

In this representation, each element of the known set is represented by a dot and the 

comparison expression is shown as is in the problem (2 times more).  

Using representations (a) and (b) to solve problems may become cumbersome if large 

numbers are involved or if the multiplicative structure is a part of a more complex 

structure, as in the book word problem above.  
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The representation (c) below, however, carries different characteristics. It shows 

repetitions of a set equal to the referred set and uses number notation to specify the 

comparison relationship. It does not show elements of singular sets. As such, it has an 

advantage over the first two representations of multiplicative structures because it can 

represent sets of any magnitude and can be combined with other representations to deal 

with more complex problems such as the book word problem described earlier.  

Some other representations we found (e.g. MEO, 2008; Vergnaud,1983) encode the 

situation as an operation, using mathematical symbols or arbitrary icons. They do not 

represent objects, sets or relationships in analog way thus making it difficult for the 

observer to create a link of analogy between the problem and its representation.   

The neuroscientist Yan Robertson (2017) explains that solver might ignore the essence 

of a problem by paying more attention to its superficial aspects. He explains that this 

behavior is quite natural at the beginning of the learning process, he also suggests the 

important role analogy and mental schema play in analyzing and solving a problem. He 

writes: 

It is obvious from the preceding discussion that analogies can play an important role in 

influencing thinking. One way that analogies can operate is by activating a schema that in 

turn influences the way we think about a current situation (p. 83). 

The same, we argue, is true for representations: individuals represent the things they 

pay attention to and the way they understand it, using available knowledge and mental 

schemes. Thus, if the thinking about objects or about exact number of objects is what 

students pay attention to, they will probably try to use schemes a) or b). Once chosen 

by a solver, the type of representation shapes the entire thinking process. Trying to 

represent each object (e.g., each individual book), students will be blocked and unable 

to solve the problem. Representation (c), however, attracts solvers’ attention directly to 

the relationship between sets; it is more flexible and can help to understand the entire 

problem at hand in its complexity. 

We can conclude that some representations might lead to dead ends, thus becoming 

counterproductive in terms of learning because they do not support cases that are more 

complex. In some conditions, they can act as didactical obstacles preventing students 

from constructing of new representation of a problem. We propose that the explicit use 

of such limited and limiting representations by the teacher may evoke spurious 

elements in students’ minds and eventually derail their attention from the 

multiplicative structure we would like them to recognize and be able to use to solve the 

problem. 

In the context of Quebec, as well as in some other Provinces and countries around the 

world, it is generally accepted that students should develop their own representations 

to solve problems. However, speaking about “ratio” and “rate” Thompson (1994) 

argues: 
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[H]ow one might classify a situation depends upon the operations by which one 

comprehends it. In Thompson (1989) I illustrate how an “objective” situation can be 

conceived in fundamentally different ways depending on quantitative operations available 

to and used by the person conceiving it (p. 16). 

Indeed, according to Robertson (2017), many beginners turn their attention to 

irrelevant elements of the problem at hand, and therefore, the representations they may 

construct can lead them to dead ends. This means that allowing students to construct 

their own representations is not as effective a teaching strategy as many believe 

because students may fail to construct representations that reflect the mathematical 

relationship in the problem at hand. Based on Thompson’s (1994) ideas, we suggest 

that for a student to construct a representation of a multiplicative structure (for example 

multiplicative comparison) he or she needs to possess the concept of this particular 

relationship to which we turn next. 

RELATIONAL PERSPECTIVE 

In his seminal work, Davydov (1982) put forward the idea of quantitative relationships 

as mathematical concepts that we need to teach and learn in elementary school, even 

prior to numbers. He argues that the concept of number appears from the multiplicative 

comparison of two magnitudes (or quantities), one playing the role of unit of 

measurement and the other being measured. In their experiments, researchers 

introduced students first with situations of comparing and measuring water, surfaces, 

and ropes through the manipulation of real objects rather than stories or word 

problems. They also used specific graphical and symbolic representations to analyze 

and discuss these situations with students. They then used the developed 

representations to support word-problem solving. 

Based on Davydov’s ideas, researchers in other countries successfully implemented 

the measuring approach in developing number concept with elementary students (e.g. 

Dougherty & Slovin, 2004). This growing research suggests that the relational 

approach might enhance students’ mathematical thinking and particularly their 

understanding of unit (Barrett et al., 2011). As far as we know, the multiplicative 

relationships and their graphical representations did not yet attract adequate attention 

in the context of simple word problems. While graphical representations can be found 

in many textbooks and teacher guides, it is not yet clear how exactly teachers use these 

representations in classroom. Thus, the role these representations might play in the 

learning process is not theoretically developed. 

According to the relational perspective, understanding a word problem means that 

students recognize the quantitative relationships involved. Sandra P. Marshall (1995) 

argues that it is possible to find the basis set of schemas (analogous to basis set of 

vectors in a space) to be able to understand and describe all and any multiplicative 

problem in a domain. What, then, can be a minimal set of multiplicative relationships 
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allowing for the understanding of all multiplicative problems of the elementary 

school? 

SIMPLE MULTIPLICATIVE RELATIONSHIPS AND THEIR 

REPRESENTATIONS 

Studying works of Davydov, Thompson, and Vergnaud yields the identification of the 

following relationships.  

Relationship Description Representation Examples 

Multiplicative 

comparison or 

measurement 

This relationship can be 

used if one quantity can 

be   measured (or 

compared in 

multiplicative way) 

against another quantity 

that is physically 

distinct from the first 

one yielding a number 

whether it is known or 

unknown. 

 

1. Max has three 

times as many 

marbles as Maya. 

2. Max’ shoe 

measures twice 

the Maya’s shoe. 

3. How much is 

Maya younger 

than Max? 

Multiplicative 

composition 

This relationship can be 

used if one quantity is 

composed of a number 

of equal parts (number 

can be rational as well). 

 

4. Max has many 

boxes with the 

same number of 

marbles in each. 

5. A car moving with 

a constant speed 

made a certain 

distance in a 

certain time. 

Cartesian 

product 

This relationship can be 

used if all three 

elements of the 

multiplicative 

relationship have 

different physical 

origins and none of 

them can be seen as a 

pure number or as a unit 

of measurement.  

 

6. One uses a 

number of skirts 

and a number of 

blouses to create 

costumes. 

7. One evaluates a 

rectangular area in 

relation to its 

length and width. 

Table 2: Basic multiplicative relationships and their graphical representations. 
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Many pedagogical sources describe a proportion among multiplicative structures. 

Obviously, the proportional relationship deserves special attention. This relationship 

can be used when one quantity being measured by the second yields the same number 

as the third being measured by the fourth. The following example presents such a 

relationship.  

A glass of cocktail contains 40% of apple juice. For any two particular amounts of cocktail, 

the juice part measures the same (each time, we consider the amount of cocktail as a unit of 

measurement). 

However, proportional relationship, in our view, is not a simple relationship so we do 

not discuss it here. This set of relationships is not like orthogonal basis vectors, 

because one can employ two or three of them (one at a time) to interpret the same 

simple word problem. However, this set is sufficient to interpret all multiplicative 

problems from the repertoire of elementary school. All graphical representations we 

propose show the underlying multiplicative relationship—thus highlighting the 

essential mathematical idea of the problem. At the same time, they do not show 

irrelevant elements such as objects or their numbers (these elements are irrelevant 

when we are looking for the arithmetic operation to figure out the unknown element of 

the relationship; they however, can be relevant when carrying out the chosen 

mathematical operation). The explicit use of these representations by the teacher may 

help not derail students’ attention from the essence of the problem.  

Representing a quantity by a segment or a lengthy rectangle has many advantages. 

First, there is a way to imagine objects arranged into a line. This mental organization 

allows for the representation of any number of objects as well as the preservation of the 

meaningful link between the initial situation and its representation. Second, it helps to 

represent an unknown quantity because it can be imagined as a line of objects. Finally, 

all elements of the relationship can be visually represented and simultaneously 

analyzed, which, in turn, helps to derive the arithmetic operation to find out the 

unknown element.  

The representations we propose can be easily combined to describe more complex 

situations. As we mentioned above, many textbooks in some countries use visual 

representations to support students’ problem solving. Yet, why and how they might 

help is not theoretically clear. We support Davydov’s idea that the concept of 

multiplicative relationship(s) is to be taught and developed by students prior to solving 

complex word problems. Therefore, we believe that it is more effective to 

conceptualize the activity of modelling, discussing, and solving simple word problems 

through development of the concept of multiplicative relationship. This activity is not 

problem solving per se, because students should not just apply their knowledge of 

multiplication and division to find a solution to a problem. Rather, this activity is 

learning about basic relationships and developing mental schemes that will eventually 

support analysis, modelling, and solving of situations that are more complex, thus 

allowing for a real problem solving. 
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We would like to share our classroom experience in developing multiplicative 

relationship with students. Space limitation precludes a description of such work but 

we are looking forward to presenting these at the conference. 
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