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Introduction  

For many of us, the word algebra brings up words such as equations, unknowns, variables, and 

functions—the world of symbols and rules about how to deal with those symbols. Some would say it was 

the best part of their experience of school mathematics, because it came down to strictly following a set 

of rules and get to the answer. Others would argue that it was the worst of their experience, because all 

those symbols were devoid of meaning. Yet, all would most probably remember when, in secondary 

school, they first met algebra. Traditionally, algebra is taught in a way very different from one students 

used to in arithmetic. This drastic change in the way of doing mathematics may have caused many to see 

algebra as an obstacle.  

Problems associated with the transition from elementary school arithmetic to secondary school algebra 

have been gaining increase attention in recent years (e.g., Bednarz & Janvier, 1993; Kieran, 1989, 2007). 

To respond to the arithmetic-algebra gap, research in the past two decades focused on exploring the 

possibilities of introducing elements of algebraic thinking at a much earlier age. Researchers (ex. 

Brizuela et Shliman, 2004; Cai et al., 2011), collectively, agree that the development of algebraic 

thinking in primary and preschool students has great potential in eliminating or significantly reducing 

difficulties in learning algebra at the high school level. However, from our research, it follows that doing 

“algebraic tasks” is less important than doing any task “algebraically”. It means that while doing 

arithmetic tasks, students can and should think algebraically. If students develop this way of thinking 

from early grades, there will no need to change it when they arrive at the secondary level and thus the 

gap between arithmetic will be reduced. 

The recommendations in this guide are well in line with the Quebec elementary mathematics curriculum. 

While the pedagogical suggestions we offer here do not involve a drastic change in the content of tasks, 

they do require a change in the way activities are carried out in the classroom. We offer a refined way of 

doing arithmetic that is characterized by prioritizing fundamental and general mathematical ideas and by 

a better balance between the teaching of arithmetic operations on the one hand and structures and 

mathematical relationships on the other hand. We also stress the important role of modeling, and 

mathematical classroom discussions. Thus, we first explain what early algebraic thinking is and then 

present some mathematical activities that can potentially allow for the development of algebraic thinking 

in young students. 
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Early algebraic thinking 

The term algebraic thinking refers to the practice of generalizing different kinds of situations looking for 

their essential properties and structure, and to the skill of communicating these general ideas in different 

ways (symbolic, verbal, schematic etc.). Generalization is a human-specific thinking tool. As such, we 

concur with Mason (2018) who asserts that it is never too early to think algebraically. Even a 3-year-old 

child can play with a scale to weigh sand or toys, to observe the difference, or to try to match the weight 

of his doll with that of a cub. The 3-year-old can thus generalize the idea of equivalence of weight (see 

for e.g., Davydov, 1982; Wallace et al., 2010). There are many other contexts that allow young children 

to immerse themselves in the world of quantities, logic, and generalization without numbers—important 

building blocks in developing algebraic thinking.  

Based on a rigorous synthesis of research, we identified five important components of early algebraic 

thinking. In each component we offer a set of possible tasks that can contribute to the development of the 

respective component of algebraic thinking.  

Component 1. Generalization of patterns 

Generalization of patterns includes the skill to observe patterns created in different contexts (using varied 

materials), to recognize their structure (what is repeated from one element to another and what changes), 

to verbally describe or model the generating principle of the pattern, to continue the pattern in 

accordance with the generating principle, to construct the elements according to their position in the 

pattern set, and to create other patterns according to the model or the description of the generator 

principle. 

 

Figure 1 Modeling and recreating patterns (Wijns, 2019). 

Component 2. Relational thinking  

This component of algebraic thought refers to developing a skill of seeing a situation or problem as a set 

of relations between quantities. It includes the ability to recognize relationships (example: a quantity is 

composed of two other quantities, or 5 = 3 + 2, or x+2=5), describe them verbally, and represent them by 

way of modeling. It also requires knowledge of the links between quantitative relationships and 
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arithmetic operations (see for e.g., Polotskaia & Savard, 2018). The component of relational thinking is 

essential for modeling and problem solving. 

 

Component 3. Functional thinking 

The functional thinking component refers to the appreciation of direct (functional) relationship between 

two co-varying quantities (see for e.g., Blanton et al., 2015). The functional relationship allows a 

bidirectional move between the co-varying quantities. For example, in the following task, one should be 

able to establish direct relationship between the number of tables and the number of seats: find the 

number of tables needed for 16 (or 160) people or find the number of people that can be seated around 2 

(200) tables. T=(S-2)÷2; S=T×2+21. To find the number of seats around 4 tables, one can do 4×2+2. 

Tables Figure Seats 

1 

 

4 

2  ? 

 

 

8 

?  16 

 

 

 

Component 4. Recursive thinking 

Recursive thinking allows us to link consecutive elements of a sequence or successive performance of an 

operation. For example, consider the same task of the tables and the seats, one can observe that adding 

                                                           
1 There are many other ways to express these direct relationships. 
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one table results in obtaining two more seats: T(n+1)=Tn+2; To find the number of seats around 4 tables, 

we can do 4+2+2+2. 

Tables Figure Sits 

1 

 

4 

2  ? 

3 

 

? 

4  ? 

5 

 

 

… … … 

The main difference between recursive thinking and functional thinking is that recursive thinking relates 

two consecutive terms (their positions in the sequence are not considered); functional thinking, on the 

other hand, relates the term with its position in the sequence. As a result, the radius of action of the 

recursive thinking is one step ahead, while functional thinking allows going forward or back in an 

arbitrary number of steps. 

Component 5. Modeling 

Modeling refers to the skill of expressing essential properties of an object or situation in some way 

different form how it is already expressed. In the above example of patterns in the section Generalization 

of Patterns, the sequence of letters (ABBABB) expresses a model of a general mechanism generating the 

pattern. In the section of Relational Thinking, we show colored bands composing a new length for which 

the expression C=A+B can be a model of the situation. These combined bands can serve as a model of a 

numerical situation such as 2+3=5. It is important to notice that this model is a formalization of essential 

relationships between the quantities involved in the situation. Thus, modeling is intertwined with 

relational thinking and functional thinking. An essential aspect of modeling is a reformulation of a given 

situation in a different (from the one given in the situation) representational system. Such reformulation 

requires an identification of the essential components and a deep understanding of the relations between 
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them. Letter notation is one of many ways to model situations. Research suggests that letter notation is 

widely applicable and accessible for students as early as 6-year olds (see for e.g., Davydov, 1982; Lee, 

2006) 

Collectively, these thinking skills relate to mathematical content of the school curriculum although they 

are not explicitly mentioned in the documents. For example, in a situation involving several boxes 

packed with the same number of apples each, it would be advantageous for the learner to understand that 

there is a general relationship between the number of boxes and the total number of apples. Without such 

understanding, the construction of the meaning of multiplication and division operations is 

unimaginable. In fact, the relationship between the number of boxes and that of apples is an instance of 

functional relationship. According to the empirical research (Daydov, 1982; Pasnak et al., 2009; Smith 

& Thompson, 2008), the above-described ways of thinking can help students develop their arithmetic 

knowledge more efficiently and sustain these skills for problem solving.   

At an even more fundamental—and foundational—level, researchers in mathematics education highlight 

several basic principles that guide human experiences within the quantitative world. We refer to these 

principles as mathematical roots, because they underpin the development of mathematical and algebraic 

thought. Children rely naturally on these principles. In fact, research has demonstrated that children 

involve these principles in a tacit, not readily observable manner and that they do so in multiple, diverse 

occasions. The purpose of specifically designed activities for kindergarten teachers would be to allow for 

each child to consciously appreciate and explicitly harness these basic principles so that she attribute an 

appropriate and clear sense the adult’s communication about the mathematical idea associated. In the 

consulted literature, scholars mention the following fundamental principles: 

Number and quantity conservation refers to the understanding that the numerosity of a set doesn’t 

depend on the positioning of the elements, or that the amount of substance (for example, clay) 

does not change if we change its shape (e.g., Pasnak et al., 2009). 

Oddity principle refers to the process of identifying a feature based on which a certain element 

can be discriminated from a set. This process requires an abstraction of the object along several 

possible features and an analysis / comparison of that feature with the feature of other elements of 

the set (e.g., Pasnak et al., 2009). 

Seriation principle refers to recognition of the principle underlying the order in which the objects 

are organized in a sequence. If one needs to insert an object, she must refer to this principle 
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(according to the characteristics of the object) to find its place in the sequence (e.g., Pasnak et al., 

2009). 

Commutativity of addition refers to the understanding that the result of addition (combination of 

amounts) is independent from the order in which the amounts were added (e.g., Blanton et al., 

2015). 

Additive identity refers to the understanding that adding or removing nothing (zero, 0) does not 

change the initial quantity (e.g., Blanton et al., 2015).  

Addition-subtraction inverse principle (doing/undoing) refers to the understanding that the initial 

amount will not change if we add another amount A and, then, remove the same amount A (e.g., 

Lai et al., 2008). 

Surely, there are more such principles to discover and develop. Research (for e.g., Pasnak et al., 2009) 

has shown that explicitly learning about such general ideas helps students (including at-risk students) to 

learn numeracy and literacy more easily and effectively.  

All researchers argue that the development of algebraic thinking requires a long-term, carefully designed 

instruction through well-structured activities along with long-term, continuous follow-up on the progress 

of students’ algebraic thinking. 

A word about the use of letters 

Increasingly growing research demonstrates that students' difficulty in interpreting letters in algebra is 

rather artificial and that such difficulties are repeatedly attributed to a curriculum that dictates the use of 

letters in mathematics only at the secondary level. In cases where letters were used at Grade 1 (see for 

e.g., Lee, 2006) to designate quantities (known or unknown), students demonstrated such difficulties, but 

for the first 3 hours of the lesson only! Studies have shown that there are ways to introduce the use of 

letters at any time in primary school without creating a drastic conflict with previous learning (see for 

e.g., Freiman et al., 2017).  

We would like to highlight the difference between a letter being used to represent a quantity and the 

notion of variable. The meaning given to a letter differs from situation to situation. For example, if we 

designate the number of chickens in a courtyard by the letter c this will stand for an unknown, but 

fixed—according to the given situation—quantity. Thus, a letter in a mathematical context may 

sometimes designate a known or unknown constant quantity. While a variable, also labelled by a letter, 
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is a quantity that varies, according to the meaning of the situation. For example, the number of chicken 

in the courtyard vary during the day. 

Next, we present a brief description on how to render an activity as an algebraic one, while using letters 

or other modeling tools. 

How to transform an arithmetic activity into an algebraic one  

In general, the construction of algebraic thought begins in a situation or problem formulated in a context 

that is familiar to the student. Such situations or problems may involve physical objects referring to the 

objects’ measurable or quantifiable properties. At a later stage, such situations can be framed within 

word problems or other mathematical contexts.   

The task should invite the student to analyze relationships between given quantities and model these 

relationships using a representational system that is different from the given one—that is, the student 

mobilizes representation of the relationships between the given quantities from, for example, a verbal 

description to a schematic one. The development of algebraic thought begins with the situation that is 

being translated with the objective of identifying generalities and relations. This translation transforms 

the situation—and, in turn, the student’s understanding of the situation—into a model. Thus, a general 

solution to the problem can be constructed first within the context of model. 

The general solution can then be interpreted in the initial context of the problem to make sense of the 

result. The context-model-context process is a crucial element of mathematical learning to ensure the 

gradual development of algebraic thought. 

Thus, the main purpose of any mathematical activity is to highlight the general structure of a specific 

situation and use this structure to construct a general solution(s).  

As we mentioned earlier, even at the age of 3, a child can experiment with differences between quantities 

by means of observation. The child can, for example, play with a set of scales (balance) to weigh sand or 

toys, or to try to match the weight of an object with that of different amounts of water. This can lead to a 

conversation about the general properties involved, such as the doll weighs less than the cub and 

therefore the cub weigh more than the doll. But if the doll eats a candy and gets bigger, it weighs the 

same as the cub. Later on, the teacher can use letters (or pictures) to introduce children to the concept of 

modeling (D<C). The teacher can even go further and ask what may happen if the doll and the cub eat a 

candy (K) each. (D+K ? C+K). Or what will happen if the doll weighs the same as the cub, but then the 

doll eats a big tart (T) and the cub eats a small cookie (K)? (D=C; T>K; D+T ? C+K). As the teacher 

facilitates this activity and allows the children to come up with different scenarios and their respective 
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letter representations, the children are gradually introduced to appropriate vocabulary and deepen their 

understanding of this relationship between quantities. The weighing activities, if properly structured, will 

help students develop a deep understanding of the notion of equivalence and learn general properties of 

addition and subtraction.  Thus, the experience with physical objects, and later with equivalence of 

numbers, lays the foundation for work with the notions of equations and inequalities. 

In the quest for a general result, students’ continual engagement with and practice in conjecturing, 

discussion, and proof, which are essential supporting elements for the development of thinking. 

Formulating conjectures requires envisioning generally valid properties and linking them to features 

explicitly identified in the situation. Through skilfully conducted discussions, the teacher can support 

students as they construct proofs and arguments for their statements. We cannot emphasize enough the 

fundamental role that making arguments and conjecturing play in any mathematical activity. In this 

process, the role of teacher is crucial. Any activity should promote children’s formulating conjectures 

and stimulate discussion involving logical arguments and proofs.  

For example, at some point in working with balance, the teacher can ask the children to “prove” a 

conjecture logically before verifying it on the real balance. If the doll weighs less than the cub and the 

cub weighs less than the bear, how can we be sure that the doll weighs less than the Bear without 

weighing them? Children can model the situation using bars as follows:  

 

They can explain: Because the cub weighs more, we need to add something to the doll to create a 

balance. To balance this with the bear, we need to add some more weight, because the bear weighs even 

more than the cub. Thus, in order to obtain a balanced weight between the doll and the bear, we need to 

add a lot to the doll, which means that the doll weighs less than the bear. 

Tasks and activities that allow children to advance several conjectures, and to revise and search for 

arguments to justify their validity of their conjectures not only offer a rich learning experience for 

students but also support the development of algebraic thinking. Such conditions stimulate the formation 

of a certain habit of mind where students investigate, formulate and revise statements. They also develop 
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an appropriate understanding of how mathematics is done, including the fact that—more  often than 

not—mathematical activities require a long time to figure out, careful thinking, and argumentation and 

might not have immediate nor definitive answers. 

Speaking about arithmetic tasks, we should carefully consider the relationships between quantities and 

the meaning of arithmetic operations. In the current primary curriculum, the emphasis is on the study of 

arithmetic operations—mainly, from a procedural point of view. However, each arithmetic operation 

does not only represent a calculation instruction, but also a relation between the quantities concerned. 

What brings together arithmetic and algebra is the study of relationships between quantities. Arithmetic 

is more about in the methods of calculating quantities expressed by numbers, while algebra studies the 

relations between quantities and their properties. Let us explore a case of a simple arithmetic word 

problem through algebraic thinking point of view. 

Marta has 2 oranges more than Olga. How many oranges does Olga have, if Marta has 5 

oranges? 

From the arithmetic point of view, this is a problem to be solved by using the subtraction operation: 5-

2=3. Very often the “official goal” of such tasks is to learn about addition and subtraction and to practice 

mental calculation. In order to bring more algebraic sense to the task, a teacher may ask the students to 

think about the first sentence only and to imagine other different concrete situations.  

Marta has 2 oranges more than Olga.  

Is it possible that Olga has 2 oranges and Marta has 1? Why? Can it be that Olga has no oranges at all? 

What can possibly be the number of Olga’s oranges and Marta’s oranges? Can we model this situation 

for all possible number of oranges for Olga and Marta? Can we express this situation by using letters? 

What do these letters mean? In any of such situations, if we know the number of Olga’s oranges, how 

can we find the number of Marta’s oranges? And if we know the number of Marta’s oranges, how can 

we find the number of Olga’s oranges? Can we imagine other similar situations when two quantities are 

compared? If we know two compared quantities, how can we describe the situation in terms of 

comparison? In any of such situations, how can we act to find the difference? Can we show it in the 

previously constructed model or by using letter expressions? 

These questions reveal the profound mathematical background of “simple” arithmetic problems. We 

should never underestimate their potential in developing algebraic thinking. Equally important, we 

should never underestimate students’ potential in learning mathematics if appropriate conditions are 

offered. 
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In what follows, we present some typical examples of tasks, proposed by researchers, to support 

algebraic thinking development at different learning levels. 

Age 3 to 6 years old 

Research suggests that it is never too early to start thinking algebraically. Aside from the scale games 

that we described in the introduction, researchers have experimented with several other contexts and 

concepts. Here are some examples. 

Conservation of number or quantity (inspired by Pasnak et al., 2009) 

The principle of number conservation is the basis of our understanding the notion of number. To help 

young children acquire this principle, they need to grapple with specially designed situations and the 

teacher needs to ask some special questions. 

The child is presented with several rabbits and a number of carrots (about 6-8). The child is asked to 

determine if there are more rabbits, more carrots, or as many carrots as rabbits. To answer these 

questions, the child is asked to give one carrot to each rabbit. This term-to-term correspondence informs 

the child of the meaning of the words "more than," "less than," "as much as." 

Rabbits and carrots are placed next to each other and it is confirmed with the child that there are as many 

rabbits as carrots, that each rabbit can have its carrot, and that there will no be carrots left. We then 

change the layout of rabbits so that the rabbits take up more space on the table. The question is repeated: 

determine whether there are more rabbits, more carrots or as many carrots as rabbits. The child who 

masters the principle of conservation will confirm equality without hesitation by explaining that no 

rabbits were added or removed. On the other hand, the child who does not master this principle will say 

that there are more rabbits. So, we repeat the question (Are there more rabbits?) And we suggest to the 

child to check if we can give a carrot to each rabbit. 

We should not expect the child to master the conservation principle at once. The educator must regularly 

propose similar situations in various contexts (water in two identical containers, two pieces of modeling 

clay, etc.) so as to give the opportunity to the child to encounter the same principle in different contexts. 

For the activity to achieve its purpose, it must be ensured that an understandable and easily accessible 

method of verification (e.g., term-to-term) is available to the child. 

Principle of seriation (inspired by Pasnak et al., 2009) 

The principle of seriation is not only at the base of algebraic thought, but it is also one of the pillars of 

mathematical reasoning. 
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To form a series, one can use various material such as sticks of different lengths, plane or solid figures of 

varied areas, colored pieces of paper with varying intensity of color, etc. Objects are arranged so that the 

quality in question (length, area, color intensity) changes from one object to another following an 

increasing or decreasing order. 

 

The child is invited to observe the series and the teacher explains that the objects are arranged in order. 

The child is then asked to close their eyes, and the teacher removes an object from the series. Other 

objects are rearranged to "hide" the empty place. 

 

The child is asked to insert the object back "in its place" within the series. To make the game fairer, we 

can offer the child to hide an object and the teacher will need to find where the piece belongs. Obviously, 

the teacher may misplace the piece and give the child the opportunity to correct the mistake and explain 

why the piece does not belong where it was placed. 

Oddity Principle (inspired by Pasnak et al., 2009) 

The intruder game helps the child learn observation and analysis of similarity and difference. For the 

game, one can choose various contexts such as plane and solid geometric figures, words and syllables, 

food items, pictures of animals etc. You can play this game to enrich the vocabulary of the child and 

introduce basic concepts. 

To play, we compose a set of three objects so that two of them have a common characteristic that the 

third object does not share. The child is asked to find out which of the objects does not belong. Objects 

can be combined to have two or three possible answers. Each time, the child is asked to explain the logic 

for the answer provided and the teacher takes the opportunity to help the child to express these thoughts 

in a correct mathematical language. In the example below, there are two circles and a triangle (the 

triangle is the odd one out), two orange figures and one blue (the small circle is the odd one out) and two 
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small figures and one big object (the big circle is the odd one out). If the child has found a solution, it is 

important to invite them to think differently to find another solution. 

 

Equivalence: The Card Game (Blanton et al., 2018) 

Numbers are represented on strips of paper as a collection of tokens (for example, in Figure 1, the left 

rectangle shows gray and black tokens). 

A. We compare two so two sets of collections of tokens. 

 

How many gray circles should you put on the 2nd card so that there is the same number of tokens on 

both cards? 

The goal of the game is to determine the number of tokens to add on one of the cards so that both sets of 

collections are equal. In this example, we want the student to engage in solving an equality like 

a+b=_+c. We can obviously swap the cards and obtain a+_=b+c or use a single chip color to work the 

equalities of type a=b+c or b+c=a. 

B. The teacher prepares pairs of cards. Each pair consists of two cards with the same number of 

tokens drawn on them. 

Each child receives a card with gray and black tokens drawn on them and is asked to find a classmate 

who has a card with an equivalent number of tokens. From the mathematical point of view, we want the 

students to establish equalities of the type a+b=c+d. We could also begin the game with cards that only 

have black chips and thus offer the equality a=a. 

In these two parts of the card game that were proposed by Blanton et al. (2018), the ultimate goal is to 

encourage students to translate the established equalities into mathematical terms. For example, when a 

child who has a card with 2 gray and 5 black tokens and another child who has 4 gray and 3 black tokens 

form a pair, the teacher can lead the children to write the established equality of 2 + 5 = 4 + 3. It is not 
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about calculating 2 + 5 = 7, but establishing equality using term-to-term correspondence and expressing 

it mathematically. 

 

 

Addition-subtraction inverse principle: The story of parking (Lai et al., 2008) 

A black carpet and an opaque box are presented to the children. The teacher says that the black carpet is 

a covered parking and he slips some cars under the box (between 4 and 7 at random). The teacher then 

says we do not need to know how many cars there are. The teacher presents a story "This morning there 

were this many cars in the parking lot. In the afternoon more cars arrived and some cars left.” The 

children are asked to take a good look at what is happening and determine “if, at the end of the day, there 

are more, less, or as many cars than there were in the morning.” 

The teacher then performs transformations in the following way: 1) placing a few cars (between 2 and 5) 

to the left of the carpet for 3 seconds then slides them under the box, OR 2) removing some cars from 

those initially placed under the box and sliding them to the right of the carpet, leaving them there for 3 

seconds then removing them. The teacher then asks the children, "Are there now more, fewer, or as 

many cars in the parking lot as this morning?"  

Variations of contexts (Baroody & Lai, 2007) 

"This is Mickey Mouse's house (the box). In his house he has a plate with biscuits. The teacher places 19 

chips to represent the cookies on the plate and then hides the plate with the box. "Minnie Mouse will 

remove cookies from or add cookies to the plate and then you will have to decide whether or not Mickey 

is happy with this change. Showing a smiling face (icon), the teacher says, "If Mickey has more cookies 

than before then he is happy." Showing a neutral face the teacher says that "If Mickey has the same 

number of cookies as before then he is not happy or sad.” And, showing a sad face, the teacher says, "If 

Mickey has fewer cookies than before then he is sad." 

Possible transformations: 

• Add objects only. 

• Remove objects only. 
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• Add a number of objects and remove less. 

• Add a number of objects and remove more. 

• Remove a number of objects and add less. 

• Remove a number of objects and add more. 

Note from authors (Baroody & Lai, 2007): The additions are always made with the left hand and the 

removal of cookies (objects) with their right hand. 

Cycle 1 (6 to 8 years) 

This cycle is usually characterized by intensive learning of number sense and properties of operations 

(addition and subtraction). It is therefore essential to complement arithmetic knowledge with relational 

knowledge. 

Modeling problems (Polotskaia & Savard, 2018; Warren & Cooper, 2009). 

The solving of simple written problems is an excellent opportunity to introduce and practice modeling. 

Before presenting the problem in its usual form using numbers, students are given a description of the 

situation without numbers. 

Dad buys some apples. Mom buys some too. How many apples did they buy in total? 

Students are asked to represent the situation in a way that it can be interpreted in a variety of data 

situations. In other words, it is not required to draw apples as discrete objects. We can, however, imagine 

the apples arranged as a line. These lines can be placed one as a continuation of the other to "see" the 

total quantity of apples that mom and dad bought. 

 

 

From this model, we can find the operation that needs to by performed to solve the problem. In a 

different situation, if the number of mom’s apples is the unknown, we can still refer to the model in order 

to propose an operation that needs to be performed. The strength of such modeling is that one can 

represent unknown quantities and discuss the solution strategies for "general" cases. 
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In the modeling activity, care must be taken that students understand the meaning attributed to the 

different elements of the model in the given context. The teacher may ask the students questions to 

reinforce the links of meaning between the text of the problem, the model, and the solution. 

• The blue stripe represents what information that is given in the problem? 

• Why did we put the stripes one after the other? 

• How are all the apples purchased represented by the model? 

• Where is the number you found as an answer to the problem represented in the story? Where is it 

represented on the model? 

Operations with missing numbers (Carpenter et al., 2005; Molina & Mason, 2009) 

Students must complete the mathematical sentences by replacing □ with the correct number. To achieve 

this, one can model (see above) the expressions and or compose a story according to the meaning of the 

expression. 

 

 

Part of the teacher’s work consists of encouraging the students to verbalize their thought processes. This 

has a double purpose. One is to develop the students’ mathematical communications skills; the other is 

for the students to explain their reasoning. For example, for the equation 8 + 4 = _ + 5 one student might 

proceed as adding first 8 with 4, then asking what number to add to 5 in order to obtain an equal result. 

Such a way of proceeding is procedural. Operations are carried out sequentially until the equation is 

reduced to a standard one. Another student can consider 5 as 4+1 and conclude that the missing number 

must be 1 less than 8. Or, one can decompose the 8 as 7+1, and perform the sequence of transformations 

8+4=(7+1)+4=7+(1+4)=7+5. In later cases, students may develop a flexible decomposition of numbers, 
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as they may be motivated by the equivalence of the quantities on both sides of the equation. All these 

aspects are essential to the development of relational thinking.  

The teacher must underline the properties, used often implicitly by the students, when discussing these 

strategies. In each case, the students should be encouraged to clearly state the property of the operation 

on which those equivalences rely. It is suggested that the equations would be set up in a way that 

requires working with one specific property at time. 

True or false (Molina & Mason, 2009) 

Students should indicate if each equality is true or false and justify. It should be noted that direct 

calculation is not always a better strategy. For example, the expression 78-16 = 78-10-6 is true because 

on both sides we leave with the same number (78) and we remove the same value (16 = 10 + 6). This is 

the kind of strategy that needs to be promoted in students. 

 

 

Describe the relationship (Blanton et al., 2015) 

From the following situations, children are asked to describe the relationship between two given 

quantities. 

1) The number of dogs and the number of dog noses. 

2) The number of days and the number of coins in Sarah's piggybank if Sarah receives a coin per day 

from her grandmother. 
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3) The number of square tables and the number of people that can be seated at Brady's birthday if the 

tables are all juxtaposed and guests sit face-to-face at each table but not at the end of the table. 

4) The number of people and the number of ears taking into consideration that each person has two ears. 

5) The number of dogs and the number of dog legs knowing that each dog has 4 legs. 

6) The size of a person and the height of that person when wearing a hat that is 1 foot in height. 

7) The number of times you cut a piece of string placed in a straight line and the number of pieces of 

string obtained. 

8) The number of candies of Marie and John have if they each have a box of candies containing the same 

number of candies and that Marie has 3 more on her box. 

9) Initially Sarah has a piggy bank that contains coins and then she gets 3 additional coins. What is the 

number of coins in Sarah's piggy bank before and after adding the 3 coins? 

10) The ages of Janice and Keisha if Janice is two years younger than Keisha. 

11) The length of a centipede (in number of segments that its body contains) and the number of days 

elapsed if each day the body of the thousand legs increases by 2 segments (we do not count the head). 
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Cycle 2 (8 to 10 years) 

At this stage, students continue to analyze and generalize patterns, model relationships that gradually 

become more complex. Students may also be encouraged to think in a functional way in some particular 

contexts. Here are some typical activities supporting further development of students’ algebraic thinking. 

Iconic equations (Papadopoulos & Patsialia, 2018) 

In this type of tasks, several equivalence relations are specified in a symbolic and pictorial way (not as 

formal equations), as illustrated below. (Ideas other than scales can be used: the strength of a team, the 

amount of food a group of animals can eat, etc.) 

     

The students are then presented with three types of tasks: a) of compensation (finding the missing animal 

that would balance out); b) of identifying elements that hold the equivalence, and c) of letting students 

set up their own equivalences.  

a) Add a mouse to make balance 

     

b) Find the hidden animal 

    

c) Create your own problem and propose it to your friend 

 

The goal of these activities is to work with equivalence relations, by using substitution of some elements 

by another. Such a process is useful when solving equations, and students working in a familiar context 

can prepare them for later algebra work. The teacher should ask students to justify their choices by 

making references to the existing equivalences. The context has the advantage that students work with 
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relations, rather than numbers – for finding a solution. Students must create equivalences instead of 

number facts. As with the use of letters, the teacher must be clear from the beginning what the pictures 

and icons represent.  This might be a problematic aspect in certain situations, because students might 

think of the animals rather than some characteristic of it as being symbolized. In order to avoid 

confusion, one might use scales and specifically refer to the animal’s weight. Such context might be 

more familiar, and students can accept more easily understand certain relations between weights, thus 

working with the given relations instead of relying on everyday experience and judgements about 

relative strength of animals. 

Idea of balance (Warren et al., 2009) 

When dealing with equations and equivalences, an experience of working with balance is beneficial. 

Balance can model the equivalences expressed by the equal sign in formal representation. It is also 

possible to (visually) identify the consequences of modifications. For example, what happens when we 

take away only from one side or from both identical objects, thus supporting the process of solving to 

find the unknown.  

While dealing with balance, the teacher must underline the quantitative sameness in a given situation. 

That is, that both sides are the same and information can be from either side (Warren & Cooper, 2005). 

In this sense, in order to reinforce the idea of equivalence, the teacher should employ more often the 

word “same” instead of “equal,” because the latter has a procedural connotation. In this situation, it is 

important to display the three models: a concrete one (with the help of physical objects or a story), a 

pictorial one, and a symbolic one. 

One limitation of the reference to the physical balance arrives in situations involving subtraction. By 

referring to physical balance, a certain relationship between quantities can be expressed in only one way. 

For example, the cat weighs as much as the mouse and the goose together—thus, exemplifying an idea 

of putting things together. Yet, the very same relation has other ways of being expressed. At certain stage 

of the development of mathematical thinking, the idea of balance can still be used as a model and not as 

a direct reference to physical balance. Below is an example of such use. 

In this activity, images of scales are used to invite students reflect on possible operations, especially 

those that preserve equivalence. Students are asked to find "the weight" of the "unknown" object. 

Magnetic tapes can be used to build the scale model on the board and allow students to manipulate the 

magnetic tapes as they demonstrate their ideas. We can also compose a story for which the scale will be 
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a model. For example, Marjorie bought three hearts of chocolate and a bar that costs $3. She paid $18 

in total. 

     

Problem solving (Cai et al, 2011; Polotskaia & Savard, 2018) 

A different approach from balance is offered by the model method, also known as the Singapore method 

(see problem solving activity described in the Cycle 1 section above). In this approach, relations between 

quantities are translated into a pictorial equation, where quantities are modelled by segments or bars. The 

advantage of this method can be seen in the possibility to “read” the same relationship in three different 

ways (a=b+c; a-c=b; a-b=c). In this case, we remain in the same representational form, yet the 

interpretation of the relations differs. It is the reference quantity that changes—adding a new aspect to 

the representational flexibility. In problem solving both types of flexibility are required, moving forward 

and backward between different representational forms (equation, pictorial, concrete) as well as moving 

in the frame of the same representation in the particular way in which we express a relation (by choosing 

a reference quantity). The following task is an illustration on how this modelling method can be used in 

representing quantitative relations given in a particular context and in solving problems. 

Raju and Samy shared $410 between them. Raju received $100 more than Samy. How much 

money did Samy receive? (Cai et al., 2011, p. 2) 

This problem, usually classified as an algebraic one, presents excellent opportunities to develop students’ 

relational and algebraic thinking without employing formal algebraic tools. 

 

The role of the teacher in advancing and promoting the different modeling and representational forms 

cannot be emphasized enough. It falls back on the teacher to encourage students to translate 

representations from one form to another. Such transitions between representations should be done in 

every problem. Research demonstrated that linking parallel representations and coordinating at least two 
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representation forms of a problem is an expression of mathematical comprehension (Duval, 2002), and 

as such is an essential component of algebraic thinking, as well as of problem solving in general. 

Problem solving (Brizuela & Schliemann, 2004) 

Students are presented with the following problem: 

Two students have the same amount of candies. Briana has one box, two tubes, and seven 

loose candies. Susan has one box, one tube, and 20 loose candies. If each box has the same 

amount [of candies] and each tube has the same amount [of candies], can you figure out 

how much [candy] each tube holds? What about each box? (p. 34) 

The situation itself is a comparison problem. The context is familiar and simple enough to engage 

students in solving it. Thus, as first step, the situation would be “acted-out” with physical objects. Under 

such circumstances, the student might use tacitly known rules of manipulation of equations. However, it 

is important for the teacher to suggest strategies for comparing: 1) “matching-up” identical amounts 

belonging to two different people; and 2) “cancelling out” (removing) identical amounts belonging to 

two different people. Verbalizing the strategies allows students to be aware of their implicit acts, by 

explicitly focusing on them. In this “acting-out” approach, students will decompose groups and will 

regroup them in order to simplify the situation up to a point when the problem is solved.  

Yet, there should be a continuation of this activity with no physical objects involved in it. Instead, 

students should be encouraged to use pictorial/iconic representation of the situation with the students 

explicitly connecting identical elements from the two sides: 

                

It is understood that this step prepares for a formal treatment of an equation.  

It is up to the teacher to introduce the best way to represent the situation with letters. By specifying the 

meaning of the letters used, the teacher can ask students how they would formalize (write up 

mathematically) the involved quantities. Then, on this formal equation, the “matching-up” and “cancel-

out” strategies can be lines up with the solution given in the pictorial representation. In this way, the 
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formal treatment of the equation finds its roots in the physical manipulation and pictorial representation. 

The first two phases are essential for grounding the work for the symbolic solution. 

Operations with holes (Carpenter et al., 2005) 

At this stage, students work a lot with all four arithmetic operations and their properties, such as 

commutativity of multiplication, distributivity, the roles of “0” and “1” for multiplication etc. The tasks 

of “operations with holes” and “true or false,” that we described in Cycle 1 section above, are useful 

tools in helping students understand these fundamental laws of mathematics. They can be easily 

modified to allow the development of this important knowledge. We present some examples. Note that 

they are not for a massive practice (worksheets), but each example should be used to attract students’ 

curiosity and organize a classroom discussion. 

 

5 × 2 − (5 × ___) = 0 5 ÷ 2 − (___ ÷ 2) = 0 

5 × 2 = (5 × 5) − (5 × ___) 10 ÷ 2 = (6 ÷ 2) + (4 ÷ ____) 

(6 × ___) = (2 × 3) × 4 24 ÷ ___ = (24 ÷ 3) ÷ 4 

7 × ___ = 7 7 × ___ = 7 

 

The distributivity of multiplication on addition/subtraction offers many opportunities to develop 

relational thinking. The teacher should give students tasks that require the representation of relations 

between quantities in order for them to be solved. Thus, instead of a direct calculation (procedural 

approach), they are to use relations and properties to arrive to an answer. 

For example, if a student is asked to calculate 4x9, but he knows the result only for 2x9, and applies it by 

considering 4x9 as 2x9+2x9, or formally, as 4x9=(2+2)x9, it would illustrate a relational approach rather 

than purely computational.  

This type of activity also constitutes the context for working with the meaning of operations like in the 

above case with the meaning of multiplication. For example, if the task presented to the student is: 52x11 

= (52x10) +m. What would m have to equal to make that a true number sentence? (Carpenter et al, 

2005). The student should be encouraged to look for a solution by using the meaning of multiplication. 

We can also model numerical expressions by using schemas. 
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Thus, the teacher must sustain the student’s reasoning by conducting a discussion in which the reference 

to the properties and meaning of operations is made explicit by a mathematical formalism. Overall, the 

non-standard equations used in this category of tasks should be set up in a way that the solution is more 

natural (easier, straightforward) by the use of the properties of operations than by calculations. 

Patterns (Nacarato et al., 2017) 

The "Form a train" task asks students to form a pattern with peers. Students form a line. Regularity is 

represented by student gestures and body positioning. For example: hand raised up / down; standing / 

kneeling, etc. The repeating element must be present in the line at least twice. A different student must 

identify the repeating element and position himself in the line according to this pattern. Wijns (2019) 

suggests that one can also encode the pattern using letters (ex. A B C A B C) or propose a code for the 

team to form by choosing gestures and positions. 

The researchers underscore the importance of allowing all students to propose hypotheses, discuss them, 

verify them, and defend them. The role of the teacher is to ensure that eventually all students are 

comfortable formulating (using mathematical language) and reuse the rule of each sequence that was 

discussed. 

Articulating series and function-machine (Moss et al., 2011) 

Note: The principle is to go back and forth between the 3 tasks in order to establish connections. 

Students must be involved in the production of sequences and in proposing rules for the machine since 

this involvement is an important step for consolidation. The rules are expressed in words. We can also 

propose stories for which the sequence will be a model. 

Task 1: Relate a figure to its position in a sequence  

Sample story: The worker is building a wall of cement blocks. He installs three blocks per hour. Here 

are the "photos" taken after 1 hour, 2 hours and 3 hours. 

 

The photos form a sequence of patterns. 
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a) If we continue to build patterns in the same way, what will the pattern look like in the next position? 

How many blocks will this pattern include? 

b) What would the pattern look like in the 10th position? How many blocks would this pattern include? 

c) And what about the pattern at the 100th position? 

d) And for any position? What could be the rule? (This question is asked after doing task 2.) 

We ask the same questions with this new sequence: 

 

f) Construct another sequence of patterns with blocks. Ask your classmates to determine the rule of this 

sequence. 

Task 2: "Guess my rule!" 

A "machine" turns a number into another number according to a rule. Enter a number in the "In" slot and 

look at the number that comes out in the "Exit" slot. Guess what's the rule. 

You can create a machine in your turn to play with your peers: choose a rule and when a number is 

entered in the machine you must return the number obtained after transformation. Your peers should 

guess the rule. 

 

Input number Output number 

10 20 

6 12 

8 16 
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Our rule is Number times 2  

Task 3: The pattern sidewalk 

A large paper tape is placed on the floor. Positions 1 to 10 are indicated. 

 

The teacher constructs a pattern at any position (the 5th for example) and then asks the students to 

advance a conjecture about the rule used for constructing the pattern according to its position. Then the 

teacher builds a second pattern that is not consecutive to the one specified before. The teacher asks the 

children to validate, or change, their rule, if necessary. The teacher builds a final pattern and then takes 

the students' proposals for the rule. Every child who makes a proposal must come and manipulate a 

construction in order to explain it. 

Cycle 3 (10-12 years) 

In Cycle 3, we continue the development of algebraic thought in increasingly complex contexts. These 

are the complex problems that contribute the most to the deepening and mastery of previously learned 

mathematical concepts. Exposure to complexity is a crucial and indispensable step in the mathematical 

education of students. Here we present some activities that promote students' formation of the 

components of algebraic thought so that they become tools of thought. 

The concept of quantitative equivalence (Papadopoulos, 2019) 

A series of interesting activities is proposed by Papadopoulos (2019). This involves presenting students 

with quantitative equivalences expressed by mobile images. Obviously, the mobile does not represent an 

image faithful to physical reality, but a model of equivalence. Working with this model requires a high 

level of abstraction. Each mobile is a combination of simple scales in equilibrium. Each object (see 

figure below) represents a "weight" so that the identical figures have the same values. The numbers in 

the circles represent known values, and a circle with a number at the head of the mobile represents its 

total weight. Combinations can have "equations" of varying degrees of complexity. Here are some 

examples of problems with mobiles. 
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Students are encouraged to use their knowledge of scale strategies to gradually simplify the presented 

situation and find the numerical values of the objects. 

Every mobile problem can be expressed as a system of equations and solved by formal algebra. 

However, mobile problems are not tools for formalizing algebraic strategies. The ultimate goal of these 

activities is to deepen students' understanding of the idea of balance and quantitative equivalence, and to 

do this at an intermediate level of abstraction. 

As in other mathematical activities, the teacher can invite students to verbalize the situation or compose 

a contextual problem that will correspond to it. Students are also asked to explain their solution strategy 

and demonstrate its validity. 

Problem solving (Beckman, 2004) 

The use of segment or strip diagrams allows students to work with very complex written problems 

however, without applying formal algebraic procedures. This way of working greatly favors the 

understanding of the mathematical relations and the laws associated with the four arithmetic operations. 

Here are some examples of problems and possible representations. 

Ron gave 2/5 of his money to his wife and spent half of what was left. Finally, he has $ 300 left. 

How much money did he have at first? 

 

This model of the situation can be developed gradually from the statements of the problem’s text. Once 

built, it allows proposing several strategies of calculation to find the unknown. For example, we can 

notice that the remaining amount of $ 300 represents 3 equal parts, two of which correspond to 1/5 of the 
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starting amount. So, we can find this amount as 300 ÷ 3 × 2 × 5. As variant, we can see the amount 

before spending the half as 300 × 2, and that corresponds to the 3/5 of the initial amount. Thus, we can 

proceed as follows: 300 × 2 ÷ 3 × 5. 

It is important to note that all computational strategies are visually supported on the model. Therefore, 

the model gives more meaning to the properties of arithmetic operations. In addition, these solutions can 

be obtained for any value of the remaining amount and are then general: M×2÷3×5. 

Here is another example of a problem for which a solution without visual representation seems very 

difficult.  

Jacques had 3 times more money than Justin. When Jacques spent $60 and Justin spent $10, 

it turned out they had the same amount. How much money did Jacques have at first? 

 

The visual analysis of the model of the problem leads us to note that $10 represents the difference 

between the $60 that Jacques spent and the amount included in 2/3 of his starting amount. In other 

words, the amount of $60 is composed of two equal parts and $10. From here, our calculation strategy 

will be: (60 − 10) ÷ 2 × 3.  

Beckman (2004) attributes the outstanding performance by Singaporean high school students in 

international TIMSS competitions to the widely used practice at primary level in Singapore of the 

written problem-solving practice supported by segment and band models. 

« Functional » treatment of a word problem (inspired by Boyce & Moss, 2019; Carraher et al., 2005) 

Several traditional written problems can be used to develop students' functional thinking. Here we 

present an example to demonstrate the transformation of the problem and clarify the didactic aspects of 

the solving activity. 

Typical problem: Peter is trying to raise money to pay for a trip to Montreal. He already has $20 

in his piggy bank. His parents give him $5 each day, if he helps them in the garden. How soon 

will Peter raise the $85 for the trip? 
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Transformed problem: Peter is trying to raise money to pay for a trip to Montreal. At first, he 

already had $20 in his piggy bank. His parents give him $5 each day if he helps them in the 

garden. In how many days will Peter raise the money for the trip? 

The purpose of transforming the problem is to find a formulation that prevents the student from starting a 

calculation immediately as we do not know the desired amount. Instead, students are asked to describe 

the process of accumulating money, to graph it on a Cartesian plane, and to match the number of days 

with the accumulated sum. 

The situation, which now has become dynamic, can be described in two distinct ways: 

 Each day we add $5: recursive manner. 

 On any given day, the sum is composed of $20 plus $5 taken the number of times equal to the 

number of days: functional manner. 

To discuss these two ways of thinking, one can also represent the situation in the form of a table of 

values. Students should be aware that the state of the piggy bank must be represented before the start of 

the day count. 

Number of days Accumulated sum 

0 
20 

1 
25 

2 
30 

3 
35 

n 
? 

 

If we move in the right-hand side column only (+5, +5, ...), we need many "steps" to arrive at the desired 

sum. On the other hand, this reasoning shows us what changes from one day to another. A more efficient 

way to answer the question of the problem (even if we do not know the desired amount), is to find a 

direct dependence between the sum and the number of days. We therefore look for a formula (general 

calculation procedure) to calculate the number of days (D) knowing the sum (S) or vice versa: 𝐷 =

(𝑆 − 20) ÷ 5 𝑜𝑟 𝑆 = 5 × 𝐷 + 20. 

This activity invites the student to use several methods of representation and modeling, to establish a 

correspondence between these models, to think in terms of "arbitrary" number and in terms of change or 

process, and to develop recursive and functional thinking. 
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For the same problem context, the question can be formulated differently. If Peter's parents want his 

dream to come true within a certain number of days (say 31), how much do they have to give him a day? 

In this case, a functional relationship must be established between the desired sum (S) and the amount 

per day (A). 𝑆 = 𝐴 × 31 + 20 or 𝐴 = (𝑆 − 20) ÷ 31. 

Figurative sequences and functional thinking (Blanton et al., 2015; Cooper & Warren, 2008; Rivera & 

Becker, 2011; Wilkie, 2019) 

The figurative sequences are recognized by the research as an essential didactic tool in the development 

of the algebraic and, especially, functional thinking in students. The literature offers many examples of 

sequences and descriptions on how to treat them in the classroom. However, research suggests that 

certain didactical elements must be respected if it were to help all students develop this type of thinking. 

 To promote functional (rather than recursive) thinking, it is better to present the sequences with 

missing terms, rather than only the first terms one after the other. 

 Before asking students to produce or describe the underlying functional relationship, we need to 

discuss with them the various ways of "seeing" the figures, their decomposition into simpler 

elements which, too, may be related to the position of the figure in the sequence. 

 Each "viewing" of the figures can provoke a different reasoning and a different formulation of the 

sought relation. It is interesting and very enriching to compare the "viewings" and formulas 

obtained by students.  

Here is an example of a figurative sequence (Wilkie & Clarke, 2016).  

 

The following table contains different interpretations (“viewing”) of the students with each leading to a 

different formula. 

Description View(decomposition) Formula 

We add 3 circles in the next figure 

 

1 + 3 + 3 + 3 … 
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The center with 3 identical segments  

 

1 +  3(𝑛 − 1) 

A horizontal and a vertical line 

 

2𝑛 − 1 + (𝑛 − 1) 

A vertical and two horizontal lines 

 

𝑛 +  2(𝑛 − 1) 

 

To analyze the relation between the position of the figure and the number of circles that compose it, one 

must use various representations and notations including the manipulation with the physical material 

(tokens, geometrical figures, etc.). For example, one can put the data on known figures in a table, on a 

Cartesian plane or in formula form. In all cases, it is the responsibility of the teacher to ensure that each 

student understands the employed notation and representations, and that the student can confidently 

move from one representation to another without losing the sense of what this representation represents. 

In the following example, the proposed situation is not in the form of a growing sequence. However, 

students were able to recognize the structure and arrange the figures in ascending order (Wilkie et 

Clarke, 2016).  

Here is a collection of trucks built in a special way using red and green squares.  

 

 What is this special way? Describe it.  

 If someone gives you several red squares, how many green squares will you need to build a truck 

from the same collection? How will you proceed to find this number of green squares? 

 Can you describe the calculation rule using the letter R for the number of red squares and the 

letter G for the number of green squares? 

Increasing sequences can be composed starting from everyday situations. For example, Rivera and 

Becker (2011) propose to measure a stack of chairs, arranged one on top of another. 
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The height of the stack of chairs is composed of the height of the first chair and the heights added, one 

for each chair added. The researchers suggest that work on this task does not stop with the finding of a 

calculation formula. For example, students have found that to calculate the height of the pile in 

centimeters you must follow the procedure: 

(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐ℎ𝑎𝑖𝑟𝑠 –  1) × 7 + 80 

So the teacher can suggest that students think about what they can say about chairs of another type, for 

which the formula is different: 

(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐ℎ𝑎𝑖𝑟𝑠 –  1) × 11 + 54 

What is the height of each chair? (54) What happens if we add a new chair? (+11) 

Complexity and flexibility of thinking (Heuvel-Panhuizen et al., 2013) 

For algebraic thought to become a real tool for problem solving for the student, it is necessary to put the 

students in a situation where they must simultaneously use several structures and different ways of 

thinking. Here is a situation in this sense, proposed by Heuvel-Panhuizen et al. (2013). 

There are 75 pages in a book. Petra starts reading on Monday. On Tuesday, she reads 5 pages 

more than Monday. On Wednesday, she reads 5 pages more than Tuesday and finishes the book. 

How many pages did Petra read on Wednesday? 

First, to understand this problem, one must imagine the process of increasing the number of pages read 

each day. This represents a functional/recursive thought. Subsequently, one can model the situation 

using the bar model. The model will capture the relationship between all elements and allow finding a 

computational strategy. These three modes of thinking—functional, relational, and modeling—are 

needed to unravel the situation and solve it. Such process of solution will be difficult for students to 

reach if they meet this challenge for the first time, and have no training in algebraic thought. 
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On the other hand, the combination of challenges will promote the mastery of each of these ways of 

thinking and will allow the creation of meaningful links between them. 

Conclusion 

We synthesize our conclusion in a form of a series of general recommendations. Their purpose is to 

improve the teaching of mathematics in elementary and kindergarten and to promote the development of 

algebraic thought among young people. 

1. Set up specific training for pre- and in-service teachers. 

Several studies noted that teachers do not have the skills and abilities needed to implement effective 

practices for the development of algebraic thought in kindergarten and primary levels. Indeed, they are 

not initiated into such approaches as students, nor in their initial training in teaching, mainly because 

research in algebraic though is relatively recent. Moreover, knowledge in formal algebra acquired at the 

secondary and college level is insufficient since it does not correspond to the contents of these new 

practices in early grades. We underline again that these new practices are, in fact, based on the implicit 

principles at the source of algebraic thinking. 

2. Prioritize a relational approach to arithmetic. 

Traditionally, arithmetic operations are treated as processes. For example, 2 + 3 = 5 is read from left to 

right and interpreted as "add 3 to 2 gives 5." This operational vision draws attention to the result 

obtained, that is 5. However, adopting a relational perspective implies taking into consideration the 

whole equation: 2 + 3 = 5 as it expresses the equivalence relation between two arithmetic expressions (2 

+ 3 and 5), thus 2 + 3 and 5 represent the same amount. This relational vision draws attention to the 

equivalence relation between 2 + 3 and 5. 

The relational approach makes it possible to highlight the fundamental laws of arithmetic and algebra 

(example: the commutativity of addition, a + b = b + a). The study of these laws contributes positively to 

the construction of arithmetic as well as algebraic knowledge. Some authors propose to approach the 

study of these laws by the generalization of the student's (numerical) arithmetic experience. This 
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approach is that of "algebra as generalized arithmetic." For example, the student may notice that 2 + 3 = 

3 + 2, that 5 + 7 = 7 + 5, that 12 + 9 = 9 + 12, and so on, thus, to induce that it is probably true for all 

numbers. 

Others propose to introduce these laws first to the students in the context of qualitative comparison of 

physical objects (length, volume, weight, etc.). Only then, these laws are exploited in arithmetic 

(numerical) and algebraic contexts. This last approach can be identified as "algebra at the base of 

arithmetic." For example, the commutativity observed on two juxtaposed lengths (strips of paper) and 

generalized from the beginning by means of the mathematical language (A + B = B + A) is easily 

transferred to the cases of addition of natural numbers or algebraic terms.  

 

 Therefore, 5+6=6+5 and 2x+3y=3y+2x. 

3. Introduce early the use of letters as representing quantities.  

The literal notation is very useful for expressing and communicating relations and fundamental laws in a 

general, concentrated, and easily observable form. It has been shown that the use of letters in 

mathematical communication is not an obstacle, and students from the age of 5-6 can benefit from 

learning to generalize and develop increasingly abstract and complex mathematical ideas. Researchers 

(ex. Davydov, 2008; Lee, 2006; Hewitt, 2012) explain that the use of letters in mathematics is a tool 

developed within the mathematical culture and children can learn it, like all other cultural tools, through 

immersion. Students must be exposed to the uses and constraints of the use of letters, and be encouraged 

to use them in their reflections and mathematical communications. 

Note that the use of letters in mathematics is varied. The letter can mean a constant quantity, known or 

unknown, a variable quantity, or a general number. 

4. Promote the study of complex situations.  

Several researchers propose that only problem solving with complex quantitative relationships ensures 

the development of deep and flexible mathematical reasoning. A complex problem (with multiple 

relationships between quantities) requires more sophisticated analysis and more elaborate planning than 

a simple problem (presenting a single relationship). Faced with a complex problem, students develop 

both the flexibility to choose and use acquired thought tools, and new cognitive and metacognitive tools. 
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Moreover, it is in this context that the fundamental laws of mathematics, the relational approach as well 

as the various strategies of reasoning make sense and become essential, and useful, tools for the student.  

5. Enhance students’ familiarity with co-varying quantities. 

To prepare students for the study of high school functions, several scholars propose the use of tasks in 

which the student must analyze the dependence between two quantities that can take several values. 

Example: the study of an increasing series of figures in which the number of elements of each figure 

depends on the position of the figure in the series and vice versa.  

Other authors propose to simply add a reflection on covariation starting 

from traditional written problems. For example, from the following problem: 

Anna has 5 pencils and Marta has 3 pencils more than Anna. How many 

pencils does Marta have? We can engage students’ thinking about the 

covariation of the number of Anna’s and Marta’s pencils. For example, we can ask the following 

questions: If Anna has 2 pencils, what can we say about the number of pencils in Marta? What if Anna 

has 10 pencils? What if Anna has x pencils, how can one express the number of Marta’s pencils? The 

authors emphasize that the understanding of the notion of "variable," which is necessary at the secondary 

level, develops through situations in which one is interested in varying quantities. Thus, it is important to 

introduce students to this type of situation from primary school. 

6. Introduce and constantly use modeling as a way of thinking.  

Modeling is recognized by researchers as a tool of reasoning and mathematical generalization. 

Researchers (ex. Corral, 2019; Davydov, 2008; Mason, 2018) point out that, from the point of view of 

learning, the use of representations is effective if the representation plays the role of model of the object 

or situation studied. Example: if students analyze a repetitive series of geometric blocks (square, circle, 

circle, square, circle, circle, etc.) the teacher can propose to model the sequence as ABBABBABB and 

then ask the students to build other examples that match this pattern (e.g., red, green, green, red, green, 

green; or large, small, small, large, small, small). Usually, what is represented by the model is the set of 

essential relationships that determines the mathematical meaning of the object or situation. The practice 

of modeling then favors the generalization and acquisition of the mathematical relations and fundamental 

laws of arithmetic and algebra. 
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7. Emphasize the learning of specific representations to boost the use of modeling and 

generalization.   

Representations, such as the number line, Cartesian plane, tables, Arrange-All schematization, the use of 

letters and mathematical symbolism, etc., are tools of reasoning and mathematical modeling. Researchers 

find that simply using varied representations in mathematics learning is not enough. Indeed, to ensure the 

access of all students to the generalization and development of more and more abstract ideas, the use and 

understanding of certain representations is essential. However, each representation tool must be used in 

alignment with the purpose of learning.  

For example, a representation by tens and units facilitates the calculation and learning of the number 

system. On the other hand, in the case of solving a written problem, we first look for the operation or 

operations to be performed. Therefore, in this case, to analyze the relationships between quantities, an 

Arrange-All representation is more relevant. Systems of specific representations need to be introduced at 

times when the learning content requires it and when the students feel the need so to facilitate their 

mathematical communication and thinking. In addition, researchers emphasize the importance of varying 

the tools of representations as well as mathematical thought patterns to equip students with a set of 

strategies to be used flexibly rather than favoring one particular strategy over others. Therefore, problem 

solving should not be limited to the use of algebraic strategies. Arithmetic or other strategies are 

sometimes more effective. 

8. Highlight mathematical discussion in class.  

All researchers insist on adopting a culture of mathematical discussion in the classroom. This culture 

includes, among other things, the use of an adequate mathematical language, the valorization of the 

reasoning of each student (even if this reasoning is, sometimes, not clear, is not complete or is not 

correct). Each student is invited to propose their vision of the situation, to formulate a hypothesis, to 

share their strategy and elaborate on it by way of supporting evidence. Each opinion should be discussed, 

justified, and clarified for all students by means of generating discussions. The time used for 

mathematical discussions is not lost but invested in the development of students’ sense of ownership 

over mathematical ideas and their development as mathematical thinkers. Within such culture, 

mathematical error is an opportunity for learning rather than a problem or an obstacle. In several 

experiments, students were asked to analyze errors made by a fictional  character of mathematically 

impossible situations or incorrect mathematical communications. The students then had the opportunity 

to engage in discussions about the nature of errors made and identify misperceptions or misconceptions. 
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All these didactic tools favor the development of students’ mathematical reasoning and contribute 

positively to their personal and social development as users and doers of mathematics. 

9. Vary teaching according to the nature of the content taught.  

In the experiments reported and consulted for the purpose of this synthesis, the teaching methods used by 

researchers vary according to the purpose of the activity and the different contents discussed. For 

example, during the pattern sequence activities, students needed an explanation of how to analyze the 

patterns visually and what to look for in order to clarify the pattern. This required explicit teaching of 

these skills. Using this new skills, students analyzed several sequences (patterns) to discover recursive 

and functional rules in an almost autonomous way, which is in line with the principles of problem-based 

teaching that was found to ensure effective learning. On the other hand, students were constantly 

encouraged and expected to respect the mathematical culture by justifying their ideas and discussing the 

strategies proposed by their peers, which exemplifies immersion teaching. 

------------------- 

These recommendations are the result of our synthesis of knowledge drawn from the work of researchers 

around the world. This knowledge confirms that algebraic thought is within the reach of young students 

and that the main question is about the choice of didactic materials and teaching strategies. However, a 

lot of work needs to be done to build a curriculum tailored to the needs of students that will truly ensure 

the reduction of arithmetic-algebra gup.  
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